The Commonwealth Potato Collection – it really is a treasure trove

A few days ago, a friend and former colleague, Dr Glenn Bryan posted a link on his Facebook page to a story—Treasure trove could hold secrets to potato problems—that appeared in the online edition of Dundee’s The Courier on 20 August.

It was all about the Commonwealth Potato Collection (CPC) that is held at The James Hutton Institute at Invergowrie, just west of Dundee.

Glenn leads the Potato Genetics and Breeding Group there, and also has overall responsibility for the CPC, ably assisted by collection curator Gaynor McKenzie.

Glenn Bryan and Gaynor McKenzie at the James Hutton Institute in Invergowrie, where wild potato species in the Commonwealth Potato Collection are conserved.

Glenn and I go back almost 30 years when, as a young scientist at the John Innes Centre (JIC) in Norwich, he was a member of a rice research project, funded by the British government, that brought together staff at the International Rice Research Institute (IRRI) in the Philippines where I was Head of the Genetic Resources Center, the University of Birmingham (where I had been a faculty member for a decade from 1981), and the JIC to use molecular markers to study IRRI’s large and globally-important germplasm collection conserved in its International Rice Genebank.

L-R: me, Glenn, and John Newbury (who later became professor at the University of Worcester) during a spot of sight-seeing near IRRI in 1993

The Commonwealth Potato Collection has a long and distinguished history, going back more than 80 years, much longer than the rice collection at IRRI. It is one of a handful of potato germplasm collections around the world in which breeders have identified disease and pest resistance genes to enhance the productivity of cultivated varieties. The CPC is particularly important from a plant quarantine perspective because the collection has been routinely tested and cleaned for various pathogens, particularly seed-borne pathogens.

Jack Hawkes

It is a collection with which Steph and I have both a personal and professional connection, from the 1970s and 80s. It’s also the legacy of one man, Professor Jack Hawkes (1915-2007) with whom I had the privilege of studying for both my MSc and PhD degrees.

Let me tell that story.


In December 1938, a young botanist—just 23 years old the previous June—set off from Liverpool, headed to Lima, Peru to join the British Empire Potato Collecting Expedition to South America, the adventure of a lifetime.

Jack in Bolivia in 1939

John ‘Jack’ Gregory Hawkes, a Christ’s College, Cambridge graduate, was destined to become one of the world’s leading potato experts and a champion of the conservation and use of plant genetic resources for food and agriculture.

He was the taxonomic botanist on the 1939 expedition, which was led by experienced plant collector Edwards Kent Balls (1892-1984). Medical doctor and amateur botanist William ‘Bill’ Balfour Gourlay (1879-1966) was the third member of the expedition. Balls and Gourlay had been collecting plants in Mexico (including some potatoes) in 1938 before moving on to Peru for the ‘Empire’ expedition.

The expedition had originally been scheduled to start in 1937, but had to be delayed because of ill health of the original expedition leader, Dr PS Hudson, Director of the Empire Bureau of Plant Breeding and Genetics in Cambridge. Jack had been hired as his assistant. Whilst waiting for the expedition to get underway, Jack took the opportunity—in August 1938—to visit Leningrad to pick the brains of Russian botanists, Drs SM Bukasov, VS Juzepczuk, and VS Lechnovicz who had already collected potatoes in South America. Jack openly acknowledged that ‘as a raw recently graduated student, [he] knew very little about potatoes’.

Nikolai Vavilov

Not only did Jack receive useful advice from these knowledgeable botanists, but he also met with the great geneticist and ‘Father of Plant Genetic Resources’ Nikolai Vavilov on several occasions during his visit to Leningrad and Moscow, ‘an experience that changed [his] life in many ways’. Vavilov had a profound effect on Jack’s subsequent career as an academic botanist and genetic resources pioneer. Alas there do not appear to be any surviving photos of Jack with Vavilov.

‘Solanum vavilovii’ growing at an experiment station near Leningrad in 1938

In Leningrad, Jack took this photo (right) of a wild potato species that had been described as Solanum vavilovii by Juzepczuk and Bukasov in 1937. Sadly that name is no longer taxonomically valid, and vavilovii is now considered simply as a variant of the species Solanum wittmackii that had been described by the German botanist Friedrich August Georg Bitter in 1913.


The Empire expedition lasted eight months from January 1939, covering northern Argentina, Bolivia, Peru, Ecuador, and ending in Colombia (a country where Jack was to reside for three years from 1948 when he was seconded to establish a national potato research station near Bogota).

Route taken by the Empire Potato Collecting Expedition

More than 1150 samples of cultivated and wild potatoes were collected in these five countries as well as a further 46 samples collected by Balls and Gourlay in Mexico in 1938.

Here is a small selection of photographs taken during the expedition, reproduced here by courtesy of the Hawkes family.


By the time the expedition ended in early September 1939, war with Germany had already been declared, and Jack’s return to the UK by ship convoy from Halifax, Newfoundland was not as comfortable as the outbound voyage nine months earlier, docking in Liverpool early in November.

Jack published an official expedition report in March 1941. Then, in 2003, he published an interesting and lengthy memoir of the expedition, Hunting the Wild Potato in the South American Andes.

Redcliffe N Salaman

Potato tubers (and presumably seeds) were shipped back to the UK, and after a quarantine inspection, were planted out in a glasshouse at the Potato Virus Research Station, Cambridge whose director was the renowned botanist (and originally a medical doctor) Redcliffe Nathan Salaman, author of the seminal work on potatoes, The History and Social Influence of the Potato, first published in 1949 and reprinted with a new introduction by Hawkes in 1985. I jealously guard the signed copy that Jack gave me.

On his return to the UK in 1939 Jack began to study the collected germplasm, describing several new species, and completing his PhD thesis (supervised by Salaman) at the University of Cambridge in 1941.

South American potato species in the Cambridge glasshouse in the summer of 1940

Among the species identified in the course of Jack’s dissertation research was Solanum ballsii from northern Argentina, which he dedicated to EK Balls in a formal description in 1944. However, in his 1963 revised taxonomy of the tuber-bearing Solanums (potatoes), Jack (with his Danish colleague Jens Peter Hjerting, 1917-2012) recognized Solanum ballsii simply as a subspecies of Solanum vernei, a species which has since provided many important sources of resistance to the potato cyst nematode.


The 1939 germplasm was the foundation of the Empire Potato Collection. When the collection curator Dr Kenneth S Dodds was appointed Director of the John Innes Institute in Bayfordbury in 1954, the collection moved with him, and was renamed the Commonwealth Potato Collection.

By the end of the decade (or early 1960s) the CPC was on the move again. This time to the Scottish Plant Breeding Station (SPBS) at Pentlandfield just south of Edinburgh when Dr Norman W Simmonds moved there in 1959. He rose through the ranks to become the station’s Director.

But that was not the end of the CPC’s peripatetic existence. It remained at the SPBS until the early 1980s, when the SPBS amalgamated with the Scottish Horticultural Research Institute (which became the Scottish Crop Research Institute or SCRI, and now known as the James Hutton Institute), and the collection moved to its present site near Dundee.


I am not sure how much the CPC grew in the intervening years, but there was a significant boost to the size and importance of the collection around 1987. Let me explain.

As I already mentioned, Jack spent three years in Colombia from 1948, returning to the UK in 1951 when he was appointed Lecturer in Taxonomy in the Department of Botany at the University of Birmingham. He was given a personal chair as Professor of Taxonomic Botany in April 1961, and became Head of Department and Mason Professor of Botany in July 1967. He remained at Birmingham until retirement in September 1982.

It was during his Birmingham years that Jack’s work on the tuber-bearing Solanums expanded significantly with several important monographs and taxonomic revisions published, based on his own field work over the years and experimental studies back at Birmingham on the potato samples he brought back to the UK and which formed an important collection in its own right. Because of the quarantine threat from these seeds (particularly of sexually-transmitted pathogens or new variants of potato viruses already present in the UK), Jack had a special licence from the then Ministry of Agriculture, Fisheries and Food (MAFF, now DEFRA) to maintain his collection at Birmingham. I’ve written about that special quarantine situation here.

In 1958, with Peter Hjerting and young research assistant Richard Lester (who later joined the Department of Botany as a Lecturer), Jack made a six month expedition to the USA , Mexico, and Central America. Here is an account of that trip. Besides potatoes, many other species were made for other institutions and botanic gardens.

Collecting a sample of Solanum agrimonifolium (No. 1854) in Guatemala. L: Jack Hawkes, Peter Hjerting, and Morse (driver?); R: Richard Lester

Just three months after I arrived at Birmingham in September 1970 to enrol on the MSc course on plant genetic resources, Jack was off on his travels once again, this time to Bolivia (report) accompanied by Peter Hjerting once again, his research assistant Phil Cribb and, in South America by Zósimo Huamán from the International Potato Center (CIP) and Moisés Zavaleta and others from Bolivia. Jack and Peter made another trip to Bolivia in 1974 (with research assistant Dave Astley), and another in 1980. They published their monograph of The Potatoes of Bolivia in 1989.

Here are some images from the 1971 expedition, courtesy of Phil Cribb.


In September 1971, Zósimo Huamán and Moisés Zavaleta came to Birmingham to study on the genetic resources MSc course. In that same cohort was a young botanist, Stephanie Tribble, recently graduated from the University of Wales – Swansea (now Swansea University). During the summer of 1972, Steph and I became ‘an item’, so-to-speak. However, by then I was already making plans to leave the UK and join CIP in Lima by January 1973, and on graduation, Steph was keen to find a position to use the experiences and skills she had gained on the course.

Just at that time, a Scientific Officer position opened at the SPBS, as assistant to Dalton Glendinning who was the curator of the CPC. Steph duly applied and was appointed from about October that year. Jack must have supported her application. Coincidentally, the MSc course external examiner was no other that Norman Simmonds who met Steph during his course assessment.

I moved to Peru in January 1973, and within a few days discovered that Jack had mentioned Steph to CIP’s Director General, Richard Sawyer. Well, to cut a long story short, Steph was offered a position as Assistant Geneticist at CIP, to support management of CIP’s large potato collection, similar to the role she’d had at Pentlandfield. She resigned from the SPBS and joined me in Lima in July that year. We married there in October. We remained with CIP in Peru and Central America for another eight years

Steph working in one of CIP’s screen-houses at La Molina on the eastern outskirts of Lima in 1974.

In April 1981 I was appointed Lecturer in Plant Biology at Birmingham, 18 months before Jack’s retirement, the aim being that I would assume Jack’s teaching commitments on the MSc course. When I also took over the Hawkes potato collection in 1982, I had high hopes of identifying funding for biosystematics and pre-breeding research. That was not the case, and as the collection needed a dedicated glasshouse and technician I could not justify (nor financially support) holding on to such valuable research space. And, in any case, continuing with the Hawkes collection was actually blocking the opportunities for other potato research because of the MAFF-imposed restrictions.

Dave Downing was the glasshouse technician who carefully managed the Hawkes collection at Birmingham for many years.

So, with some regret but also acknowledging that Jack’s collection would be better placed elsewhere, I contacted my colleagues at the CPC to see if they would be interested to receive it—lock, stock, and barrel. And that indeed was what happened. I’m sure many new potato lines were added to the CPC. The germplasm was placed in quarantine in the first instance, and has passed through various stages of testing before being added officially to the CPC. Throughout the 80s and 90s Jack would visit the CPC from time-to-time, and look through the materials, helping with the correct identification of species and the like.

His interest in and contributions to potato science remained with him almost up to his death in 2007. By then he had become increasingly frail, and had moved into a care home, his wife of more than 50 years, Barbara, having passed away some years previously. By then, Jack’s reputation and legacy was sealed. Not only has his scientific output contributed to the conservation and use of potato genetic resources worldwide, embodied in the CPC that he helped establish all those decades earlier, but through the MSc course that he founded in 1969, hundreds of professionals worldwide have continued to carry the genetic conservation torch. A fine legacy, indeed!


Not so good in the field . . .

I have a rather embarrassing confession to make. Although I have degrees in botany, I’m not very good at all at identifying plants in the field. It’s just not something that has ever come easily. But I do know how to identify different species. More of that later.

Birds are a different kettle of fish altogether (says he, mixing his metaphors). I have little difficulty in identifying most of the species I come across. Maybe that’s because I’ve had an interest in bird watching since I was a small boy.

I came late to botany, however. It wasn’t until I was studying for my university entrance exams (known here in the UK as the General Certificate of Education (GCE) Advanced Level exams) that I realized that botany was the degree course for me, something I achieved at the University of Southampton (in a combined honors degree with geography) for three years from 1967.

Les Watson

During that first year, and on a field trip to the west of Ireland, we systematically studied the different families of flowering plants, under the careful guidance of fellow Leekensian¹ Les Watson who was a lecturer in plant taxonomy at Southampton.

But after graduation, my interest in all things botanical turned to the conservation and use of plant genetic resources for food and agriculture, and that became my research interest for the next 40 years, focusing on potatoes in South and Central America during the 1970s, on potatoes and grain legumes when I taught at the University of Birmingham in the 1980s, and then rice after I joined the International Rice Research Institute in the Philippines in 1991 up to my retirement in 2010.

With my Birmingham PhD supervisor, Professor Jack Hawkes, identifying potato varieties in the field genebank of the International Potato Center in Peru in 1974, and collecting wild species in the Andes northeast of Lima in March 1975.


So I’ve never been much focused on field botany, and unlike many amateur botanists and naturalists, didn’t have much enthusiasm for naming all the plants I came across. It’s a bit ironic really because in 1981 when I joined the University of Birmingham as a lecturer in plant biology, I was ‘asked’ to contribute to a second year module on flowering plant taxonomy. My contributions had less to do with identifying and studying the various plant families per se than understanding how and why variation in plant species comes about, and how variation patterns are treated in formal taxonomy.

In recent months, however, my interest has turned to plant identification. Since Steph and I moved to the northeast of England last October, I have tried to get out for a walk every day, a minimum of two miles, weather permitting. We have discovered the fantastic waggonways that crisscross Tyneside, the remnants of a busy coal mining industry that opened up in the nineteenth century and eventually met its demise in the second half of the last century. The waggonways are the routes of the railway lines that carried coal from the mines to quays (or staiths as they were known locally) on the River Tyne from where it was shipped all over the world.

Nowadays the waggonways are a haven for wildlife, and a lush abundance of plant species almost too numerous to count. They have become important (vital even) biodiversity corridors connecting different habitats across Newcastle and into the surrounding Northumberland landscape.

And, as I walking along the Cramlington Waggonway recently close to home on my way to the Silverlink Biodiversity Park (developed on a former coal waste tip), I was struck about how many of the plants I could not identify, although many were familiar. But I did want to know their names.

Now, as part of my student training in botany, I learnt how to use a flora, which is a list of all the species known to grown in a particular area or region. For the UK, the most comprehensive flora was the Flora of the British Isles, by Clapham, Tutin and Warburg, first published in 1952, and still in print today after several editions and revisions, but supplanted to some extent perhaps by Clive Stace’s New Flora of the British Isles, first published in 1991 and now in its 4th edition.

The essential thing about these floras is that they have a key to help you identify plants.

However, recognizing many of the plant families or genera as I can, I don’t have to start at the beginning of a key, but can jump to a particular family or genus to narrow down my search for the correct identity.


But my quest to identify plants has been made a whole lot easier. I follow lots of botanical related feeds on Twitter, and a couple of weeks ago, I came across one tweet referring to a plant identification site called Pl@ntNet, for which there is an app for use of mobile phones and the like. So I thought I’d give it a try.

Essentially, you upload an image to the site, and it comes back with a probability (%) of it being a particular species, but also suggesting other candidates albeit at a lower probability.

So what is Pl@ntNet? On its website, it states that Pl@ntNet is a citizen science project available as an app that helps you identify plants thanks to your pictures. This project is part of the Floris’Tic initiative, which aims to promote scientific, technical and industrial culture in plant sciences. For this, it relies on a consortium of complementary expertise in Botany, IT and Project Animation.

Pl@ntNet is a French project under the Agropolis Foundation initiated in 2009 with the objective of developing new forms of identification, sharing and accumulation of data on plants. The mobile application allows you to take photos of a plant, and to compare these photos with those of an expertly-validated and dynamically updated image base, so as to facilitate the identification of a plant. The application, with more than a million downloads, and several thousand daily users demonstrates the keen interest of the general public and the educational world for this type of technology, and a thirst for knowledge about the plants around us. This initiative illustrates the great motivation of the teams involved to produce and disseminate new forms of access to knowledge in the field of botany.

Nothing ventured, nothing gained. I decided to give it a whirl. Like all projects of this type, it depends on expert feedback, so there is a large database of photos of correctly identified species, and these are also cataloged into the floras from different parts of the world, such as Western Europe or Costa Rica, for example. In fact there are 35 subcategories to narrow down your selection. And thousands upon thousands of images of flowers, leaves, habit and habitat, fruits and the like.

So I started with a plant I did know to test how the app worked and its accuracy. I came across a patch of bloody cranesbill (Geranium sanguineum L., Geraniaceae) on the sand dunes close to home. I took a closeup of the flowers and submitted it to Pl@ntNet there and then. Within seconds, a result came back: bloody cranesbill, 95%!

On a walk last week in Northumberland, I saw a daisy-like plant that looked familiar. I’d seen something similar growing at Biddulph Grange (a National Trust property in North Staffordshire some years back). Again, within seconds, Pl@ntNet suggested Doronicum pardalianches L, Asteraceae, commonly known as giant leopard’s-bane), but with only a 56% certainty based on the flowers. So I took another photo, of the leaves this time, and Pl@ntNet again proposed the same species, with 80% certainty. So I’m pretty confident that this was indeed giant leopard’s-bane.

I must say how impressed I am with this app. As I take my smartphone with me on all my walks, Pl@ntNet will be part of my armory to identify wildlife, along with my binoculars and camera. It really is worth having a go. The app is a little memory hungry at 231 MB, but already I’m finding that my field botany is improving, and it’s so much fun having at least an indication there and then of a species identity that can be verified later on with reference to a flora, should the app not give a high identification value.

Maybe, one day, I’ll even become a competent field botanist. Although that might be stretching things a little too far.


¹ A native of Leek, a small market town in North Staffordshire where I grew up.

That’s not a fair question . . .

I worked overseas for much of my career—just over 27 years—in three countries. For those who are new to my blog, I’m from the UK, and I worked in agricultural research (on potatoes and rice) in Peru, Costa Rica, and the Philippines, besides spending a decade in the UK in between teaching plant sciences at the University of Birmingham.

I have been asked, from time to time, which of the three countries Steph and I enjoyed the most. That’s not really a fair question.

Each country was a totally different experience, reflecting to a large extent that stage of our lives. We were young and newly-married in Peru in the early 1970s, our first time abroad. We raised our elder daughter Hannah in Costa Rica in the late 1970s, and were already in our early 40s when we moved to the Philippines in 1991, with two growing daughters: Hannah was 13, and Philippa just nine (born in Worcestershire in the UK). I got to learn a second language, Spanish, and became quite fluent by the time we left the Americas in 1981.

Now that I’ve been retired for over a decade, it’s a good opportunity to reflect on those years spent abroad.


laurent_amerique_du_sud_politiqueI won’t deny that I have a particular soft-spot for Peru. It was a country I’d wanted to visit since I was a small boy, when I often spent hours poring over maps of South America, imagining what those distant countries and cities would be like to visit. 

I don’t know why I was particularly drawn to the map of South America. I guess it’s the iconic shape for one thing. But, when I first moved up to high school in 1960, just before my 12th birthday, our geography lessons focused on several South American countries. I wrote to a number of embassies in London asking for information packs, and was rewarded over the following weeks with a host of brochures, maps, and the like.

Anyway, to cut a long story short (I have posted several stories elsewhere about my early days in Lima), I was offered, in February 1971, the opportunity to work in Peru, initially for just a year from September that year. Things didn’t go to plan, and it wasn’t until January 1973 that I actually landed in Lima, which became my home for the next three years.

19731013 003 Wedding

13 October 1973

Steph joined me in July, and we married the following October in the Miraflores suburb where we rented an apartment. Working at the International Potato Center (known as CIP through its Spanish acronym) we both traveled frequently to the center’s research station in Huancayo, an important town in the central Andes of Peru, in the broad and fertile Mantaro valley, a 300 km journey that often took six hours or more. The highway, the Carretera Central, crossed the Andes at a highest point of 4,843 metres (15,890 ft) at Ticlio (around Km 120).

peru-037

In my own work collecting indigenous varieties of potatoes, I traveled to many parts of northern Peru, in the Departments of Ancash, La Libertad, and Cajamarca in 1973 and 1974.

And to the south around Lake Titicaca in the Department of Puno and near Cuzco, where I continued my research towards a PhD.

_DSC2828

Collecting potato flower buds for chromosome counts, from a farmer’s field near Cuzco, in February 1974.

Steph and I also took great pleasure in taking our Volkswagen deep into the mountains, and on long trips down the coast to Arequipa and up to Lake Titicaca. And north to the Callejón de Huaylas in Ancash, below Peru’s highest mountain Huascarán, and on to Cajamarca further north.

Peru 050(1)

Looking north to the Callejon de Huaylas, and Nevado Huascarán, Peru’s highest mountain.

I visited Cuzco and Machu Picchu just a week after I arrived in Peru, and had great pleasure taking Steph there in December the same year. In fact we delayed our honeymoon so we could book a stay at the tourist hotel at Machu Picchu (a hotel that closed many years ago).

Enjoying Machu Picchu in December 1973.

Our years in Lima were special. As I said, it was the first time Steph and I had worked abroad. CIP was a young organization, founded just over a year before I joined. There was a small group of staff, pioneers in a way, and there weren’t the layers of bureaucracy and procedures that bedevil much larger and longer-established organizations.

Peru is a stunningly beautiful country, and lived up to all my expectations. I was not disappointed. It had everything: culture, history, archaeology, landscapes. And wonderful food. You name it, Peru had it. 


But, after three years, it was time to move on, and that’s when we began a new chapter in Costa Rica from April 1976 a new chapter. Professionally, for me it was a significant move. I’d turned 27 a few months earlier. CIP’s Director General Richard Sawyer asked me to set up a research program to adapt potatoes to hot and humid conditions, so-called ‘tropical potatoes’. I was on my own; I had to rely on my own resources to a large extent. It was a steep learning curve, but so worthwhile and stood me in good stead for the rest of my career.

We remained in Costa Rica for almost five years, based at a regional agricultural research institute, CATIE, in the small town of Turrialba, some 70 km east of San José, the capital city.

The CATIE administration building

We enjoyed trips to the volcanoes nearby: Turrialba, Irazú, and Poás, to the beaches of northwest Costa Rica, just south of the frontier with Nicaragua on the Guanacaste Peninsula.  Also to the north of Panama where potatoes were the main crop in the volcanic region just south of the international border.

Hannah was born in Costa Rica in April 1978. It was a great place to raise a small child. In 1980 we took her the Monteverde National Biological Reserve in the northwest of the country (and many hours drive from Turrialba) in search of the Resplendent Quetzal.

Professionally, I learnt a lot about potatoes as a crop, about the management of potato diseases, and seed production, and contributed to setting up one of the first multi-country programs among any of the CGIAR centers. PRECODEPA as it was known set the standard for multilateral cooperation between national programs for many years to come.

I had a great team, albeit small, working with me: Jorge, Moisés, and Leda, and I wrote about them and catching up again after 40 years in a recent blog post.

Costa Rica is such a beautiful, green country, a tropical paradise, with about 25% of its land area set aside for national parks and the like. It’s one of the most biodiverse countries in the world, and I spent many hours sitting on the doorstep at home, sipping a super ice-cold beer (Cerveza Tropical was my beverage of choice) watching the multitude of birds that visited our garden. On one Christmas bird survey in the Turrialba valley, me and my birding partner spotted around 100 different species in half a day! And mammals as well: skunks, armadillos, and coatimundi among those found in the garden, not to mention some of the world’s most poisonous snakes.

After almost five years there, it was time to move on, with the expectation of a posting with CIP to the Philippines. Instead we returned to the UK in 1981, and didn’t actually make it to the Philippines until a decade later. An archipelago of more than 7600 islands; the Land of Smiles.


By the end of the 1980s I was much less enamored of academic life, and had begun to look out for new opportunities. One particularly interesting one came along in September 1990 when I applied for the position of Head of the Genetic Resources Center (GRC) at the International Rice Research Institute (IRRI) in Los Baños, about 65 km south of Manila.

Having been interviewed at the beginning of January 1991, I was offered the position a couple of weeks later, and I moved to the Philippines (without the family) on 1 July that year. Steph and the girls joined me just after Christmas.

We had a comfortable single storey residence at IRRI Staff Housing, a gated community that nestled under a dormant volcano, Mt Makiling.

Mt Makiling, from the IRRI research farm.

The IRRI research center was about ten minutes from home, and an institute bus took us to and fro over the course of the day. Staff Housing had tennis courts and a swimming pool, as well as basketball and volleyball courts, all in regular use by my colleagues and their families. Lilia was our full-time, live-in helper for almost the whole 19 years we lived in the Philippines.

In the early 1990s there was also a large group of children the same age as Hannah and Philippa, and Staff Housing was a safe environment for them to play, although I have since learned that they all got up to some daring escapades at night. Like climbing the water tower!

Steph kept herself busy with her daily swim, and a range of hobbies, including her small orchid collection, and beading (one hobby that has grown and grown!) I had a busy time at work, and less time for leisure at home. I enjoyed a barbecue whenever we could, and for many years I kept a small aviary of budgerigars. Just after I arrived in the Philippines I adopted a Siamese cat, Pusa, who finally succumbed to the ripe old age of 20 in 1998, when we acquired another Siamese, Tara. I wrote about our feline companions in this post.

But one thing Steph and I shared in common, though not to the same degree in one respect, was our love of the beach and sea. Before moving to the Philippines, I had never even snorkeled. That all changed in February 1992 when we made our first (and only) visit to Puerto Galera on the island of Mindoro. Shortly afterwards, Hannah learned to scuba dive, and I followed a year later in 1993 eventually completing more than 360 dives, all at Anilao south of Los Baños. Philippa learned a few years later when she was old enough (you had to be 13), but Steph never did take to scuba diving, being content with snorkeling the stretch of beach in front of our favorite beach resort, Arthur’s Place.

Road travel in the Philippines was always a bit of a nightmare. Inadequate roads, too many vehicles, and not enough road discipline, especially among the jeepney and tricycle drivers.

The drive to Manila could take a couple of hours, often more, and it wasn’t until just before we left the Philippines in 2010 that the main highway to Manila, the South Luzon Expressway or SLEX was finally upgraded significantly. Likewise the road connecting SLEX to the south coast where we went to the beach.

Hannah and Philippa attended the International School Manila (ISM) that was, in those days, located in the heart of Makati, the main business district of Manila. The school day started at 07:15 which meant they had to be on the road by 06:00 in those fist years. By the time Philippa graduated from high school in 1999, the buses were leaving for Manila by 04:30, and not returning home until about 16:00 or so (the school day finishing around 14:00). Phil would often go for a swim, have her dinner, and in her final two years at ISM, when she was studying for the International Baccalaureate Diploma (IB), she would have homework until about midnight. Then she snatched a few hours sleep before heading off early the next morning to school once again. All the children took blankets and pillows on the bus and caught with what sleep they could.

For both Hannah and Philippa these were stressful, but ultimately fulfilling, school years. The system was very different from the English system, the academic side very demanding and competitive, especially the IB curriculum. However, both girls did flourish and the hard work and discipline required to get through saw them in good stead later on in their university careers, with both earning a PhD degree in psychology!

Professionally, my years at IRRI were very rewarding. As Head of GRC, one of my most important responsibilities was to manage the world’s largest and genetically most-diverse collection of rice varieties and wild species (with more than 130,000 different seed samples) in the International Rice Genebank. I had a staff of about 75 researchers and assistants. I learnt a lot about people management. However, my task were made so much easier by having so many dedicated professionals to support me.

After a decade genebanking, I moved to IRRI’s senior management team as Director for Program Planning & Communications (DPPC), and set up an office to handle the institute’s interactions with its donors and fund-raising. And I remained as DPPC until my retirement in 2010.

Much as I had enjoyed my years with GRC, setting up the DPPC Office with hand-picked staff was very rewarding. I had a great team: Corinta, Zeny, Sol, Yeyet, Vhel, and Eric, and they never (well, hardly ever) let me—or IRRI—down.

Christmas 2004 at Antonio’s in Tagaytay. L-R: me, Sol, Eric, Corinta, Vhel, and Zeny.

30 April 2010, and my last day at IRRI. L-R: Eric, Corinta, Zeny, me, Vhel, and Yeyet.

We had such a lot of fun together. There was a lot of laughter in the DPPC Office. We even played badminton together once a week.

But we took our work seriously enough, and helped raise the institute’s annual budget to USD60 million.

In 2009, Steph and I had the opportunity of our first and only long road trip in the Philippines. We always took our annual leave in one block and returned to the UK each summer, so spent little time exploring the Philippines, something I now regret. Anyway, me and my DPPC team decided that we’d take a few days off (with Steph joining us) to visit the world famous (and World Heritage Site) rice terraces in the north of Luzon. That was a fantastic trip, which I wrote about here.

The rice terraces above Banaue.

Enjoying a beer together after a long day in the sun. L-R: Corinta, Zeny, our driver, Vhel, Yeyet, Eric, and me.

At the Batad rice terraces, after a long walk down the mountain. L-R: Yeyet, Steph, Eric, Vhel, and Corinta.


So there we have it: a short trip down memory lane. I have been very fortunate, blessed even, to have worked in three remarkable countries and alongside some of the best professionals I could have hoped for. I have no regrets about making that decision, in early 1973 to move abroad. It has been a fulfilling career in international agricultural research, and I’ve certainly been able to explore this wonderful world of ours, as you will have discovered if you ever perused my blog to any depth.

Getting the message out about genetic resources

For much of my career, I have taken a keen interest in science communication. Such that, a couple of years after I’d become IRRI’s Director for Program Planning & Coordination in 2001, I was asked to take on line management responsibility for several of IRRI’s administrative units, including the Communication and Publications Services (CPS) headed by my good friend Gene Hettel. My job changed to some degree, as did my title: Director for Program Planning & Communications.

I’ve always felt that scientists have a responsibility to explain their work to the general public in plain language. We’re fortunate here in the UK; there are several leading lights in this respect who have made their mark in the media and now represent, to a considerable extent, ‘the face of science’ nationally. None of them is shy about speaking out on matters of concern to society at large.

Sir David Attenborough (far left, above) is one of the world’s leading advocates for biodiversity conservation who also eloquently explains the threat and challenges of climate change. Professors Alice Roberts (second left, of The University of Birmingham) and Brian Cox (second right, The University of Manchester) have both made their mark in TV broadcasts in recent years, bringing fascinating programs covering a range of topics to the small screen. And then again, there’s Sir Paul Nurse (far right), Director of the Francis Crick Institute in London and former President of the Royal Society. I was particularly impressed with his Richard Dimbleby Lecture, The New Enlightenment, on the BBC in 2012 about his passion for science. It’s well worth a watch.


I would never claim to be in the same league as these illustrious scientists. However, over the years I have tried—in my small way—to raise awareness of the science area with which I am most familiar: plant genetic resources and their conservation. And in this blog, I have written extensively about some of my work on potatoes at the International Potato Center in Peru and on rice at the International Rice Research Institute in the Philippines, as well as training genetic resources scientists at the University of Birmingham.

So, when I was approached a few weeks ago to be interviewed and contribute to a podcast series, Plant Breeding Stories, I jumped at the chance.

The podcasts are hosted by Hannah Senior, Managing Director of PBS International, a world leading company in pollination control. So far, there have been eleven podcasts in two series, with mine broadcast for the first time just a couple of days ago. In this clip, Hannah explains the rationale for the series.

Just click on the image below to listen to our 35 minute conversation about genetic resources, genebanks, and their importance for plant breeding and food security. Oh, and a little about me and how I got into genetic resources work in the first place.

I hope you find the podcast interesting, and even a little bit enlightening. A transcript of the broadcast can be downloaded here. Thanks for listening.


Nothing comes for free . . .

Ask almost any scientist, and the one thing they (mostly) have in common is their dislike (I could put it stronger) of having to write reports or to be held to deadlines.

Many would prefer never to be reminded they have reporting commitments, and just bury their heads in the academic sand. Just yesterday, I came across a twitter thread started by an academic deploring the lack of support from her institute in terms of reporting and, for her, making the whole process unacceptably complicated.

Reports come in many guises: progress reports to supervisors or project leaders, to their institutions, and perhaps most importantly, to the body that provided funds for their research project.

So having labored for hours, days, weeks or longer to prepare a proposal for submission to a funding body, and having that agonizing wait until the project is actually approved for funding, research scientists then have to prepare reports periodically on progress, and how the funding has actually been spent. Nevertheless, it’s important that scientists appreciate that they do have a responsibility, commitment even, to account for their projects and funding, even though many see this as an unacceptable chore taking them away from valuable research time and writing scientific papers, rather than just another component of the project implementation.

Now, if you work for one of the international agricultural research institute sponsored by the CGIAR [1], like I did for about 27 years in South and Central America (on potatoes at the International Potato Center or CIP) and in the Philippines (on rice at the International Rice Research Institute or IRRI), report writing came with the territory, so to speak. But the demands for reports have changed over the decades since I first became involved in 1973.

Back in the day, there were no electronic communications to permit instantaneous delivery of research reports. For example, when I worked for CIP in Costa Rica from 1976 to 1980, I had to submit quarterly reports to headquarters in Lima. These were sent in the mail, taking two to three weeks to reach their destination. That was accepted practice.

Not today, however. Some donors have become increasingly dysfunctional, with constant demands for information. Now! Because reports can be submitted as email attachments, requests are often posted at the last minute, without ever appreciating that to provide the necessary information might take hours, even days, to compile.

That’s not to say that responding to such requests with some urgency is unnecessary. But to compile and analyse information into a coherent report takes time. And for many scientists, time is of the essence.


When it comes to international agricultural research, the ultimate donors are tax payers, and governments have to satisfy that their investment is used appropriately and, more importantly, delivers the expected outcomes. I’ve written about those aspects in another blog post a few years back.

And, in the case of the CGIAR centers, that means having a positive impact of the welfare and livelihoods of farming families around the world, and those who depend on their agricultural productivity to survive, especially urban populations in cities and mega-cities who do not produce their own food. Take the case of rice, for example. Half the world’s population—several billion people—eats rice at least once a day, over a million tons a day worldwide, maybe more. That’s . And rice farmers must maintain their productivity, increase it even, if the demand for this staple crop is met. So it’s important to use the diversity in genebank collections to breed new varieties, or to fight pests and diseases. Then again, supply constraints must be understood if farmers are to be empowered to sell their rice, or what prevents women farmers in particular from improving their livelihoods.


In 2001, I gave up day-to-day science to join IRRI’s senior management team, as Director for Program Planning and Communications with the brief (and mandate) to beef up the institute’s management of its many research projects, to liaise with its donor community, and increase donor support for IRRI’s overall research agenda. It would be no exaggeration to state that when we set up the Program Planning and Communications office, IRRI’s relations with its donor had almost hit rock bottom.

The PPC Team on my last day at IRRI on 30 April 2010. L-R: Eric Clutario, Zeny Federico, Corinta Guerta, me, Vel Hernandez-Ilao, Yeyet Enriquez.

For one thing, senior management had no clear picture of how many research projects were currently being funded, nor what commitments had been made to the respective donors. Indeed, things were so bad that some donors had threatened to pause existing funding support and not even consider new initiatives until the institute got its house in order.

Ron Cantrell

The Director General, Ron Cantrell, asked me to sort this deplorable situation and do whatever necessary to retrieve our standing with the donors. I can’t say that my efforts were universally welcomed by my colleagues at the outset. They had grown accustomed to not being held to account. But eventually they came to appreciate the value of having a support office like PPC.

First things first. It took a week to come up with a first but incomplete list of all donor-funded projects. The next step was to make sure we could identify each one uniquely. And like assigning an accession number to a sample of germplasm in a genebank, each project was given its own identity (DPPC-year-number), notwithstanding that each donor might also have assigned an ID according to their own project management. Even at the project concept stage, we assigned a DPPC number that remained with the project funded or not. We never re-assigned a DPPC number to another project. Eventually, as we built our project management system, we linked all the projects with the institute’s finance systems. Everyone was singing from the same hymn sheet.

Whereas IRRI was probably behind in its reporting on more than 75% of its projects when I set up the Program Planning & Communications Office in May 2001, we had recovered to less than 10% six months later. And, having worked with the donors by explaining what we were doing, they were very supportive. However, having made good progress in terms of improvement our relationship with donors, there were always a couple of prima donnas at IRRI who wouldn’t play ball, didn’t feel that any project management regime was their concern, and despite our best efforts rarely complied on time with requests for information and reporting. To the overall detriment of the institute, it has to be said. Having these scientists write a report was akin to getting blood from a stone.

Once we had a handle on the scope of IRRI’s projects, we set about establishing some standard operating procedures (SOP) to develop project ideas, to submit projects to donors, and to provide IRRI’s scientists with the appropriate support to meet donor expectations. We set up reporting schedules for each project, so that no scientist could claim they hadn’t realized a report was due, assisted scientists to finalize their reports in terms of donor formats, and editing, submitting reports on behalf of the institute and taking care of any follow up. One of the complexities we had to face were the different reporting formats and requirements that each donor adopted. But with support from my colleague Gene Hettel and his team (especially science editor Bill Hardy) in Communication and Publications Services (CPS) we always submitted quality reports easily recognizable as coming from IRRI.

The CPS Team in 2008. Gene Hettel (head of CPS) is second from the left, front row. Bill Hardy (scientific editor) is kneeling (right behind Gene), to my right.

Reporting became just another component of any successfully-managed project, not an undesirable add-on seen by scientists as an imposition on their freedom and time. But the type of reports needed by donors were not the same as writing a scientific paper for example, and we had to unlearn many scientists from their usual publication habits. Donors are interested in progress and need sufficient technical information to establish scientific credibility. They don’t want to be swamped by technical jargon that too many scientists rely on. The information needed to be accessible to a non-technical readership, and that’s how the PPC team helped out, supported by our CPS colleagues.

Donors do not like surprises, so I ensured that my office maintained good communications with the many donor offices around the world, by email, by telephone, and making personal visits at least once a year. Establishing that personal relationship with my donor counterparts was an important aspect of my job as Director for Program Planning & Communications. If a project encountered a problem, or we expected a report to be delayed, or anticipated a project overrun, we talked with our donors from the outset, not leaving things until after the fact, so to speak.

Project implementation and management is a two way affair. Once made, donors should honor their commitments. And one donor, the UK government, has palpably failed in this respect regarding overseas aid (from which the CGIAR centers are funded), reducing its statutory commitment of 0.7% of gross national income (or GNI) to 0.5% for the foreseeable future, in response to the financial crisis brought about by the coronavirus pandemic. The UK gave its support through the Department for International Development (DFID) that has now merged with the Foreign & Commonwealth Office to form the Foreign, Commonwealth & Development Office. Overseas aid no longer has its own profile, much to the detriment of the program, and because of the reduction in aid commitment, a significant number of projects worldwide (not just CGIAR) that relied on British aid have been cut and even staff made redundant. This is an appalling situation, and although I don’t have to hand how this aid commitment has affected the CGIAR centers, I’m sure there will be a negative budgetary consequence.

So, while the donors require (demand even) accountability for the funds they allocate, I believe it is equally important that donors like the British government maintain their financial commitments, and behave responsibly.


[1] CGIAR is a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.

Almost as rare as hen’s teeth . . .

For about a two week period each Spring, around the end of April, The Alnwick Garden comes alive with an abundance of Japanese cherry blossoms, just as the rest of the garden is beginning to emerge from its winter slumber. We made a return visit there last Thursday only a week after we had been there, which I wrote about at the time. We noted then that the orchard was about to bloom, and didn’t want to miss the opportunity to see this wonder of Nature.

In 2008, this orchard of more than 320 great white cherry trees (Prunus ‘Taihaku’) was planted in the east-southeast section of the garden. Now 20 feet tall or more, words are insufficient to describe the wonder of this cherry orchard in full bloom.

The orchard is touted as the largest in the world of ‘Taihaku’ cherries. And this particular variety has an interesting history linking Japan, an Englishman, and a Sussex garden.

Cherry trees are central to Japanese culture, but tastes in different varieties have changed over the centuries. ‘Taihaku’ cherries apparently went extinct in Japan in the late 19th century. Move on a few decades, and up steps a very interesting Englishman, Captain Collingwood Ingram (1880-1981) who, after an early career interest in ornithology, became one of the world’s authorities on cherries. Indeed he was often referred to as ‘Cherry’ Ingram, a colossus, introducing many different Prunus species and varieties to the UK.

And it was through his passion for cherries that, in the 1920s, he came across a single, rather decrepit tree of Prunus ‘Taihaku’ in a Sussex garden. He successfully took cuttings, returning some to Japan. The trees at Alnwick (and indeed all ‘Taihaku’ trees worldwide) derive from that single Sussex tree.

In 2016, Japanese author Naoko Abe published an account about Ingram’s contribution to the survival of Japanese cherries. Here is a 2019 review of that book published by the Irish Garden Plant Society.

Abe herself also wrote an article for the Literary Hub, which is well worth the time to delve into. It gives some interesting background about Japanese cherry culture, why varieties became extinct, and of course, how Ingram turned this situation around.


Since all ‘Taihaku’ trees are derived from a single individual following vegetative propagation, there is zero genetic diversity worldwide for this variety. It’s an extreme example of genetic vulnerability, but that’s not a situation unique to Prunus ‘Taihaku’. The danger is that a pest or disease may emerge to which the trees have limited or no resistance, and there are no opportunities for selection of genetically-different individuals that might withstand such challenges.

Another example is the potato in Ireland. During the Irish Potato Famine of the 1840s which decimated the Irish population, potato crops (predominantly of the variety ‘Irish Lumper’ or ‘Lumper’) were wiped out by the late bight pathogen Phytophthora infestans, all plants equally susceptible to the disease. Unfortunately there are too many examples of crops with a narrow genetic base that are under threat.

Let’s look at the situation in rice, a crop I am familiar with. It’s the world’s most important staple crop, providing sustenance daily (and indeed often several times a day) to half the world’s population. Since time immemorial farmers have cultivated tens of thousands of varieties. But over the past half century, new varieties such as IR36 and IR72 (from the breeding program at the International Rice Research Institute, IRRI, in the Philippines where I worked from 1991-2010) have been adopted across across millions of hectares in Asia, replacing many of those farmer varieties, and effectively becoming genetic monocultures.

In the world of genetic resources conservation, which was the focus of much of my professional life over many decades, scientists are continually concerned about losing different varieties, and genetic diversity overall. However, this loss of diversity, or genetic erosion as it’s known, has been occurring forever, as farmers swap varieties and adopt new ones, the sorts of choices that farmers make all the time. There’s nothing strange or concerning about that as such.

Let me elaborate with an example from the Philippines. In the mid-1990s, a major typhoon swept across the north of the main island of Luzon, destroying in its path much of the local rice agriculture. Since we had been carrying out fieldwork in that region prior to the typhoon and, with permission from the farmers, taken small samples of their varieties for genetic analysis, we were able (after seed increase at IRRI) to return to farmers the varieties they had been growing before the catastrophe. Some willingly took them back. Others decided that this was an opportunity to make changes to their farming systems and adopt new varieties. But that was their choice, not ours (Pham et al., 2002).

Varieties may be lost, but is the actual genetic diversity itself totally lost? We have some evidence from rice (Ford-Lloyd et al., 2008) that’s not the case:

. . . where germplasm and genetic data have been collected throughout South and Southeast Asia over many decades, contrary to popular opinion, we have been unable to detect a significant reduction of available genetic diversity in our study material. This absence of a decline may be viewed positively; over the 33-year timescale of our study, genetic diversity amongst landraces grown in traditional agricultural systems was still sufficiently abundant to be collected for ex situ conservation.

However, the authors go on to raise concerns about future threats to diversity caused by climate changes or different agricultural practices. While landrace varieties are grown they can continue to adapt to environmental changes.

Overall, however, with thousands of different varieties of rice (and a multitude of other crops and their wild relatives) safely conserved in genebanks around the world, genetic diversity has not been lost. It’s available to dip into by breeders who incorporate traits from the landraces into new varieties (just look at the example of IR72 below that has 22 landrace varieties and one wild species in its pedigree), or as we showed in the Philippines example above, returned to farmers so they can continue to benefit in different ways from these old varieties.

Just recently I’ve been involved in an online discussion among old friends and colleagues about the loss of genetic diversity over the decades, and how much has actually been lost. As Brian Ford-Lloyd and I wrote in our 1986 introduction to genetic conservation:

Hard facts relating to genetic erosion are not easy to come by; what has been lost already can no longer be accounted. One therefore has to resort mainly to personal impressions and subjective accounts.

What is important is that over the past half century, efforts have been stepped up to safely conserve old varieties and wild species in a network of genebanks across the globe. And, in recent years, that effort has been backstopped financially and technically by the Crop Trust with grants in perpetuity to major world genebanks (such as those managed by eleven CGIAR centers) and the opening of the Svalbard Global Seed Vault in the permafrost high above the Arctic Circle.

However, even as these initiatives gain traction and deliver on their promises, we cannot remain complacent. Situations such as the ‘Taihaku’ cherry will continue to emerge (although perhaps not so extreme), and crops, wild species—and rare breed animals—will remain under threat. With habitat loss, and the threat of climate change that is gaining pace, never has genetic conservation (and use) been so important. ‘Taihaku’ can teach us a lesson if we take our eye off the ball.


 

I never aspired to be an academic

If, in the summer of 1970, someone had told me that one day I would be teaching botany at university, I would have told them they were delusional. But that’s what happened in April 1981 when I was appointed Lecturer in Plant Biology at the University of Birmingham. Hard to believe that’s already 40 years ago today. I stayed at Birmingham for a decade.

Birmingham is a campus university, one of the first, and also the first of the so-called ‘redbrick‘ universities. The campus has changed radically in the 30 years since I left, but many of the same landmarks are still there. The beauty of the campus can be appreciated in this promotional video.


I never, ever had any pretensions to a life in academia. As an undergraduate studying for a combined degree in Environmental Botany and Geography at University of Southampton between 1967 and 1970, I was a run-of-the-mill student. It wasn’t that I had little enthusiasm for my degree. Quite the contrary, for the most part. I enjoyed my three years at university, but I did burn the candle more at one end than the other. Also, I didn’t really know (or understand) how to study effectively, and no-one mentored me to become better. And it showed in my exam results. So while I graduated with a BSc (Hons.) degree, it was only a Lower Second; I just missed out, by a couple of percentage points, on an Upper or 2(i) degree. Perhaps with a little more effort I could have achieved that goal of a ‘better degree’. Que será . . .

However, about halfway through my final year at Southampton, I applied to Birmingham for a place on the recently-established graduate MSc course on Conservation and Utilisation of Plant Genetic Resources (CUPGR) in the Department of Botany. And the rest is history, so to speak.

I was interviewed in February 1970 and offered a place, but with no guarantee of funding. It wasn’t until late in the summer—about a couple of weeks before classes commenced—that the head of department, Professor Jack Hawkes phoned me to confirm my place (notwithstanding my ‘poor’ degree) and that he’d managed to squeeze a small grant from the university. It was just sufficient to pay my academic fees, and provide an allowance of around £5 per week (about £67 at today’s value) towards my living expenses.

So, in early September 1970 I found myself in Birmingham alongside four other MSc candidates, all older than me, from Nigeria, Pakistan, Turkey, and Venezuela, excited to learn all about plant genetic resources. I discovered my study mojo, redeeming myself academically (rather well, in fact), sufficient for Jack Hawkes to take me on as one of his PhD students, even as I was expecting to move to Peru to join the newly-established International Potato Center (CIP) in Lima. And that’s what I did for the rest of the decade, working in South and Central America before returning to Birmingham as a member of staff.


The years before Birmingham
I spent over eight years with CIP, between January 1973 and April 1976, working as an Associate Taxonomist in Lima, and helping to manage the multitude of potato varieties in the center’s field genebank, participating in collecting trips to different parts of Peru to find new varieties not already conserved in the genebank, and continuing research towards my PhD.

In the meantime, my girlfriend Stephanie (who I met at Birmingham) and I decided to get married, and she flew out to Peru in July 1973. We were married in Lima in October [1].

In May 1975, Steph and I returned to Birmingham for six months so I could complete the residency requirements for my PhD, and to write and defend my thesis. We returned to Lima by the end of December just after I received my degree.

From April 1976 and November 1980, Steph and I lived in Costa Rica in Central America on the campus of the regional agricultural research center, CATIE, in Turrialba, a small town 62 km due east of the capital, San José.

I had joined CIP’s Regional Research Department to strengthen the regional program for Mexico, Central America and the Caribbean. In 1976, the regional headquarters were in Toluca, Mexico where my head of program, Oscar Hidalgo lived. After he moved to the USA for graduate studies in 1977, CIP’s Director General, Richard Sawyer, asked me to take on the leadership of the regional program, and that’s what I did for the next four years, with an emphasis on breeding potatoes adapted to hot tropical environments, seed systems, bacterial disease resistance, and regional program development.

By November 1980 I felt it was time to move on, and requested CIP to assign me to another program. We moved back to Lima. However, with one eye on life beyond CIP, and with a growing daughter, Hannah (born in April 1978, and who would, in the next couple of years, be starting school) I also began to look for employment opportunities in the UK.


Looking for new opportunities
Towards the end of 1980 (but before we had returned to Lima) I became aware that a new lectureship was about to be advertised in the Department of Plant Biology (formerly Botany, my alma mater) at Birmingham. With the retirement of Jack Hawkes scheduled for September 1982, the lectureship would be recruited to fill an anticipated gap in teaching on the CUPGR Course.

I sent in an application and waited ‘patiently’ (patience is not one of my virtues) for a reply to come through. By the end of December (when we were already back in Lima, and in limbo so to speak) I was told I was on a long short list, but would only proceed to the final short list if I would confirm attending an interview in Birmingham (at my own expense) towards the end of January 1981. So, nothing ventured, nothing gained, and with the encouragement of the Dr Sawyer (who promised to keep a position open for me if the Birmingham application was unsuccessful) I headed to the UK.

Since completing my PhD in 1975, I had published three papers from my thesis, and a few others on potato diseases and agronomy. Not an extensive publication list by any stretch of the imagination, compared to what might be expected of faculty candidates nowadays. In reality my work at CIP hadn’t led to many scientific publication opportunities. Publications were not the be-all and end-all metric of success with the international centers back in the day. It’s what one achieved programmatically, and its impact on the lives of potato farmers that was the most important performance criterion. So, while I didn’t have a string of papers to my name, I did have lots of field and managerial experience, I’d worked with genetic resources for a number of years, and my research interests, in taxonomy and biosystematics, aligned well with the new position at Birmingham.

I interviewed successfully (eminent geneticist Professor John Jinks chairing the selection panel), and was offered the lectureship on the spot, from 1 April. The university even coughed up more than half the costs of my travel from Peru for interview. Subject to successfully passing a three-year probation period, I would then be offered tenure (tenure track as they say in North America), the holy grail of all who aspire to life in academia.


Heading to Birmingham
Saying farewell to CIP in mid-March 1981, and after more than eight happy years in South and Central America, Steph, Hannah, and I headed back to the UK via New York, where I had to close our account with Citibank on 5th Avenue.

Steph and Hannah at the top of the Empire State Building

This was just a couple of weeks or so before I was due to begin at Birmingham. We headed first to Steph’s parents in Southend-on-Sea. Since we had nowhere to live in Birmingham, we decided that I should move there on my own in the first instance, and start to look for a house that would suit us.

A few months before I joined Plant Biology, the department had recruited a lecturer in plant biochemistry, Dr John Dodds, a few years younger than me (I was 32 when I joined the university). John and I quickly became friends, and he offered me the second bedroom in his apartment, a short distance from the university.

The search for a house didn’t take long, and by mid-April we’d put in an offer on a house in Bromsgrove, some 13 miles south of the university, which was to remain our home for the next 39 years until we sold up last September. We moved in at the beginning of July, the day before I had to go away for the following two weeks as one of the staff supervising a second year undergraduate ecology field trip in Scotland. Not the most convenient of commitments under the circumstances. But that’s another story.


I start teaching
So, 40 years on, what are my reflections on the decade I spent at Birmingham?

It was midway through the 1980-81 academic year when I joined the department. I spent much of April settling in. My first office (I eventually moved office three times over the next decade) was located in the GRACE Lab (i.e., Genetic Resources and Crop Evolution Lab) where the CUPGR MSc students were based, in the grounds of Winterbourne House, on the edge of the main university campus, and about ten minutes walk from the department.

The GRACE Lab

The lab had been constructed around 1970 or so to house the Botanical Section of the British Antarctic Survey (before it moved to Cambridge). One other member of staff, Dr Pauline Mumford (a seed physiologist, on a temporary lectureship funded by the International Board for Plant Genetic Resources – now Bioversity International) also had her office there.

Pauline Mumford (standing, center) with the MSc Class of ’82 (my first full year at Birmingham) from (L-R) Malaysia, Uruguay, Germany, Turkey, Bangladesh (x2), Portugal, and Indonesia.

By September, an office had been found for me in the main building. This was necessary since, unlike Pauline, I had teaching commitments to undergraduate students on the honours Biological Sciences degree course, as well as having undergraduate tutees to mentor and meet with on a regular basis.

As I said, I’d been recruited to take over, in the first instance, Jack Hawkes’ teaching commitments, which comprised a contribution to the second year module in plant taxonomy, and evolution of crop plants, one of the main components of the CUPGR course. There were also opportunities to develop other courses, and in due time, this is what I did.

At the end of April 1981, Jack called me into his office, handed me his taxonomy lecture notes and said ‘You’re up tomorrow morning’. Talk about being thrown in the deep end. Jack lectured about ‘experimental taxonomy’, patterns of variations, breeding systems and the like, and how taxonomic classification drew on these data. Come the next day, I strode into the lecture theater with as much confidence as I could muster, and began to wax lyrical about breeding systems. About half way through, I noticed Jack quietly walk into the room, and seat himself at the back, to check on how well I was doing (or not). That was one of his mentor roles. He was gone before I’d finished, and later on he gave me some useful feedback—he’d liked what he had seen and heard.

But the lecture hadn’t nearly taken place. One of my colleagues, Dr Richard Lester, who was the lead on the taxonomy module, blithely informed me that he would be sitting in on my lecture the next day. ‘Oh no, you’re not‘ I emphatically retorted. I continued, ‘Walk in and I stop the lecture’. I had never really seen eye-to-eye with Richard ever since the day he had taught me on the MSc Course. I won’t go into detail, but let me say that we just had a prickly relationship. What particularly irked me is that Richard reported our conversation to Jack, and that’s why Jack appeared the next day.

I had quite a heavy teaching load, compared to many of my colleagues, even among those in the other three departments [2] that made up the School of Biological Sciences. Fortunately, I had no first year teaching. Besides my second year plant taxonomy lectures, I developed a small module on agroecosystems in the Second Year Common Course (of which I became chair over the course of the decade).

In their final year, students took four modules each of five weeks (plus a common evolution course). My long-time friend Brian Ford-Lloyd and I developed a module on plant genetic resources. Besides daily lectures, each student had to complete a short research project. I can’t deny that it was always a challenge to come up with appropriate projects that would yield results in such a short period. But I found working alongside these (mostly enthusiastic) students a lot of fun.

Dave Astley

Each year I’d take the group a few miles down the road to the National Vegetable Gene Bank (now the UK Vegetable Genebank) at Wellesbourne, where we’d meet its Director, Dr Dave Astley (who had completed his MSc and PhD, on potatoes with Jack Hawkes at Birmingham). It was a great opportunity for my students to understand the realities of genetic conservation.

I taught a 25 lecture course to the MSc students on crop diversity and evolution, with two practical classes each week during which students would look at as wide a range of diversity as we could grow at Winterbourne (mostly under glass). In this way, they learned about the taxonomy of the different crops, how diversity had developed, their breeding systems, and the like. The practical classes were always the most challenging element to this course. We never knew until each class just what materials would be available.

In 1982, I took a group of students to Israel for a two week course on genetic resources of the eastern Mediterranean. Not all of that year’s intake, unfortunately, as some came from countries that banned travel to Israel.

I developed a module on germplasm collecting, and in the summer months set some field exercises on a synthetic barley population comprising up to ten varieties that differed morphologically, and also matured at different times, among other traits. We would sample this population in several ways to see how each method ‘captured’ the various barleys at the known frequency of each (obviously I knew the proportions of each variety in the population).

The functioning of agroecosystems was something I’d been drawn to during my time in Costa Rica, so I passed some of that interest on to the MSc group, and helped out on some other modules like data management. And I became the Short Course Tutor for students who came to Birmingham for one or other of the two taught semesters, or both in some instances. Looking after a cohort of students from all over the world, who often had limited language skills, was both a challenge and a worthwhile endeavour. To help all of our MSc and Short Course students we worked with colleagues in the English Department who ran courses for students with English as a second language. Each member of staff would record a lecture or more, and these would be worked up into an interactive tutorial between students, ourselves, and the English staff. Once one’s lectures have been pulled apart, it’s remarkable to discover just how many idiomatic phrases one uses quite casually but which mean almost nothing to a non-native speaker.

Each MSc student had to write a dissertation, examined in September at the end of the year (just as I had on lentils in 1971), based on research completed during the summer months after sitting the written exams. Over my decade with the course, I must have supervised the dissertations of 25 students or more, working mainly on potatoes and legumes, and leading in some cases to worthwhile scientific publications. Several of these students went on to complete their PhD under my supervision often in partnership with another research institute like CIP, Rothamsted Experiment Station (now Rothamsted Research), MAFF plant pathology lab in Harpenden, and the Food Research Institute in Norwich.

2020-06-27007

With PhD students Ghani Yunus (from Malaysia) and Javier Francisco-Ortega (from Spain-Canary Islands).

The course celebrated it 20th anniversary in 1989, and among the celebrations we planted a medlar tree (sadly no longer there) in the Biological Sciences quadrangle.

Left of the tree: Professor Smallman, Jim Callow, Trevor Williams, Jack Hawkes. Right of the tree: Mike Jackson, Richard Lester, Mike Lawrence. And many students, of course.


Tutees
Earlier, I mentioned that at the beginning of each academic year every staff member was assigned a group of students (the annual intake then was more than 100 students, and is considerably larger today) as tutees, with whom we would meet on a regular basis. These tutorial sessions, one-on-one or in a small group, were an informal opportunity of assessing each student’s progress, to set some work, and overall to help with their well-being since for many, attending university would be the first time they were away from home, and fending for themselves. The tutorial system was not like those at the Oxbridge colleges.

Most students flourished, some struggled. Having someone with whom to share their concerns was a lifeline for some students. I always thought that my tutor responsibilities were among the most important I had as a member of staff, and ensuring my door was always open (or as open as it could be) whenever a tutee needed to contact me. Not all my colleagues viewed their tutorial responsibilities the same. And I do appreciate that, today, with so many more students arriving at university, staff have to structure their availability much more rigidly, sometimes to excess.

In October 1981, my first final year tutee was Vernonica ‘Noni’ Tong* who went on to complete a PhD with my close colleague, geneticist Dr Mike Lawrence on incompatibility systems in poppies. Noni joined the Genetics Department and rose to become Professor of Plant Cell Biology (now Emeritus). Several others also went on to graduate work. Another, Julian Parkhill, graduated around 1987 or 1988, went on to Bristol for his PhD, and is now Professor of Veterinary Medicine at the University of Cambridge. He was elected a Fellow of the Royal Society in 2014.

I like to think that, in some way, I helped these students and others make wise career choices, and instilled in them a sense of their own worth. At least one former tutee (who completed her PhD at the University of Durham) has told me so, and that made it all worthwhile.


The School of Biological Sciences
In September 1982, Jack Hawkes retired from the Mason Chair of Botany, and a young lecturer, Jim Callow from the University of Leeds, was elected to the position. Jim took on the role of MSc Course leader, but the day-to-day administration fell to Brian Ford-Lloyd (as Tutor) and myself (for the Short Course students). Jim was a physiologist/ biochemist with an interest in biotechnology, but nothing about genetic resources. He also had little understanding (or sympathy, so I felt) for my areas of research and teaching interests. He frankly did not understand, so I never developed a good relationship with him.

Brian Ford-Lloyd

My closest colleague in the department was Brian who had been appointed to a lectureship around 1977 or 1978. He had completed his PhD in the department in 1973, and he and I were graduate students together until I moved to Peru. We became good friends, and this friendship has lasted until today. He also lived in Bromsgrove, and after I returned to the UK on retirement in 2010, Brian (now Professor Ford-Lloyd) and I would meet up every few weeks for a few beers at the Red Lion on Bromsgrove’s High Street, and to put the world to rights.

On reflection, I can say that relationships among the staff of Plant Biology were pretty harmonious, notwithstanding the comment I made earlier. But several staff were approaching retirement as well, so there was quite a change in the department when a couple of young lecturers were also appointed within a year of me, Drs John Newbury and Jon Green, both of whom also rose to professorships late in their careers.

Towards the end of the 1980s, the School of Biological Sciences underwent a fundamental reorganization, abandoning the federal system, and transforming into a single department with a unitary Head of School. Much to the chagrin of my friends and colleagues in Genetics, Jim Callow was selected as the first Head of School under this new arrangement. To replace the old four department structure, we organized ourselves into five research themes. I joined the Plant Genetics Group, moving my office once again closer to other group members. As a member of this group, I probably had two or three of the best years I spent at Birmingham, with Dr (later Professor) Mike Kearsey as my head of group.


Research and publications
My research interests focused on potatoes and legumes, often sustained by a healthy cohort of MSc and PhD students.

One project, funded by the British government from overseas aid budget in partnership with CIP, investigated the options for breeding potatoes grown from true potato seed. A project that we had to pull the plug on after five years.

In another, Brian and I worked with a commercial crisping (potato chips, in US parlance) company to produce improved potato varieties using induced somaclonal variation, leading to some interesting and unexpected implications for in vitro genetic conservation. There was also an interesting PR outcome from the project.

All in all, my group research led to 29 scientific papers in peer-reviewed journals, several book chapters, and a range of contributions to the so-called grey literature (not peer-reviewed, but nonetheless important scientifically). You can open a list of those Birmingham publications here.

I’m also proud of the introductory textbook on genetic resources that Brian and I wrote together, published in 1986. It quickly sold its print run of more than 3000 copies.

Then, in 1989, we organized a weekend conference (with Professor Martin Parry of the Department of Geography) on climate change, leading to the pioneer publication of the conference proceedings in 1990 [3] in this newly-emerged field of climate change science. Brian, Martin and I collaborated almost a quarter of a century later to edit another book on the same topic.

I was fortunate to undertake one or two consultancies during my years at Birmingham. The most significant was a three week assignment towards the end of the decade to review a seed production project funded by the Swiss government, that took us Huancayo in the Central Andes, to Cajamarca in the north, and Cuzco in the south, as well as on the coast. This was an excellent project, which we recommended for second phase funding, that ultimately collapsed due to the conflict with the terrorist group Shining Path or Sendero Luminoso that affected all parts of Peruvian society.

The seed project review team (L-R): Peruvian agronomist, me (University of Birmingham), Cesar Vittorelli (CIP Liaison), Swiss economist (SDC), Carlos Valverde (ISNAR, team leader)

With funding from the International Board for Plant Genetic Resources, one of my PhD students, Javier Francisco-Ortega was able to collect an indigenous legume species from his native Canary Islands in 1989, for his dissertation research. I joined Javier for three weeks on that trip.

Collecting escobon (Chamaecytisus proliferus) in Tenerife in 1989


All work and no play . . .
Each December, the Plant Biology Christmas party was usually held at Winterbourne House. For several years, we organized a pantomime, written and produced by one of the graduate students, Wendy (I don’t remember her surname). These were great fun, and everyone could let their hair down, taking the opportunity for some friendly digs at one staff member or another. In the photos below, I played the Fairy Godmother in a 1987 version of Cinderella, and on the right, I was the Grand Vizier in Aladdin, seen here with graduate student Hilary Denny as Aladdin. In the top left photo, kneeling on the right, and wearing what looks like a blue saucepan on his head, is Ian Godwin, a postdoc from Australia for one year. Ian is now Professor of Crop Science at the Queensland Alliance for Agriculture and Food Innovation. To Ian’s left is Liz Aitken, also a postdoc at that time who came from the University of Aberdeen, and now also a Professor at the University of Queensland.

Then, in the summer months, I organized a departmental barbecue that we held in Winterbourne Gardens, that were part of the department in those days, and now open to the public. In this photo, I’m being assisted by one of my PhD students, Denise Burman.

2020-06-27007 - Copy (2)


Moving on
So why did I leave in July 1991?

Professor Martin Parry

Towards the end of the 1980s I also became heavily involved in a university-wide initiative, known as Environmental Research Management or ERM, to promote the university’s expertise in environmental research, chaired by Martin Parry (I became the Deputy Chair). So, coupled with my own teaching, research, and administrative duties in Biological Sciences, I was quite busy, and on my way to promotion. I was doing all the ‘right things’, and working my way up the promotions ladder (competing with all other eligible staff in the Science Faculty). It was quite helpful that the Dean of the Science Faculty, Professor George Morrison (a nuclear physicist), and someone with his finger on the promotions pulse, also took a close interest in ERM, and I got to know him quite well.

When I handed in my resignation in March 1991, I knew that my application for promotion to Senior Lecturer was about to be approved (I was already on the Senior Lecturer pay scale). By then, however, life in academia had lost some of its allure. And Margaret Thatcher was to blame.

Around 1998 or 1989, the Thatcher government forced a number of ‘reforms’ on the universities, bringing in performance initiatives and the like, without which the government would not consider either increased funding to the system or pay increases for staff.

So we all underwent performance management training (something I became very familiar with during the next phases of my career). It was made clear that staff who were struggling (as teachers, researchers, or even with administration) would be offered help and remedial training to up their game. Those of us performing well (which included myself) were offered the opportunity to take on even more. It was a breaking point moment. With the increased emphasis on research performance and research income, I felt that my time in academia had almost run its course. My research interests did not easily attract research council funding. I was beginning to feel like a square peg in a round hole.

So, when in September 1990, a job advert for the position of head of the Genetic Resources Center at IRRI landed on my desk, I successfully threw my hat in the ring, and joined IRRI in July 1991, remaining there for the next 19 years, before retiring back to the UK in May 2010.

With few regrets I resigned and prepared for the move to the Philippines. I had to see my students (both undergraduate and MSc) through their exams in June before I could, with good conscience, leave the university. My last day was Friday 30 June, and Brian often reminds me that when he came round to our house in Bromsgrove to say goodbye and wish me well the following day, he was shocked at how white-faced and stressed I appeared. Well, it was a big move and I was leaving the family behind for the next six months, and heading off into the unknown to some extent. Early on Sunday morning I headed to Birmingham International Airport to begin the long journey east via London Heathrow.


But that’s not quite the end of my academic life. Not long after I joined IRRI, I was appointed Affiliate Professor of Agronomy at the University of the Philippines-Los Baños (UPLB). Then, with Brian, John Newbury, and colleagues at the John Innes Centre, we developed a collaborative research project looking at the application of molecular markers to study and manage the large rice germplasm collection at IRRI. I was appointed Honorary Senior Lecturer at Birmingham, and for several years when I was back on home leave I would visit the university and lecture to the MSc students on the realities and challenges of managing a large genebank, as well as following up on our research collaboration.

That came to an end when the funding ran out after five years, and I moved out of research and genebank management at IRRI into a senior management position as Director for Program Planning and Communications.

As Director for Program Planning and Communications, I had line management responsibility for (L-R) Communications and Publications Services (Gene Hettel), IRRI’s library (Mila Ramos), IT Services (Marco van den Berg), the Development Office (Duncan Macintosh), and Program Planning (Corinta Guerta).


Was I cut out for a life in academia? Yes and no. I think I fulfilled my duties conscientiously, and with some success in some aspects. I admit that my research contributions were not the strongest perhaps. But I did mostly enjoy the teaching and the interaction with students. I always felt that not enough weight was given to one’s teaching contributions. Back in the day research was the main performance metric, and increasingly the amount of research funding that one could generate. That was a bit of a treadmill. So while I mostly enjoyed my decade at Birmingham, I found the next nineteen years at IRRI far more satisfying. I had the opportunity to put my stamp on an important component of the institute’s program, bringing the genebank and its operations into the 21st century, and ensuring the safety and availability of one of the world’s most important germplasm collections. Having left genebanking behind in 2001, I then enjoyed another nine years as a member of the institute’s senior management team. And, on reflection, I think those management years gave me the most satisfaction of my career.


Roger Rowe

[1] Steph also worked at CIP as an Associate Geneticist assisting the head of department, Dr Roger Rowe (who co-supervised my PhD research), to manage the germplasm collection. Prior to joining CIP, Steph had been a research assistant with the Commonwealth Potato Collection (CPC) that, in those days, was housed at the Scottish Plant Breeding Station just south of Edinburgh. The CPC is now maintained at the James Hutton Institute west of Dundee.

[2] These were: Zoology & Comparative Physiology; Genetics; and Microbiology. With Plant Biology, the four departments were administratively semi-independent in a federal School of Biological Sciences, coming together to teach a degree in Biological Sciences, with specialisms in the component disciplines. All first year biologists took the same common course, as well as a multidisciplinary common course in their second year and an evolution course in the third and final year.

In 2000, the School of Biological Sciences merged with the School of Biochemistry to form the School of Biosciences. Then, in 2008, there was a much larger university-wide reorganization, and Biosciences became part of the College of Life and Environmental Sciences, one of five Colleges that replaced Faculties across the university.

[3] Jackson, M., B.V. Ford-Lloyd & M.L. Parry (eds.), 1990. Climatic Change and Plant Genetic Resources. Belhaven Press, London, p. 190.

* On 6 May 2021, it was announced that Noni had been elected as a Fellow of the Royal Society!

Fifty is a mature number . . .

I came across a tweet a few days ago from the International Potato Center (CIP, based in Lima, Peru), reminding everyone that the center will celebrate its Golden Jubilee later this year. Fifty years of successfully bringing improved potato and sweet potato varieties and enhanced technologies to the world!

And that got me thinking about the achievements of international agricultural research in general over the past half century, and even a little longer. Let me expand.

CIP’s founding Director General (1971-1991) was Dr Richard Sawyer who envisioned a regional research [network] and collaboration with researchers around the world to develop new technologies and innovations to improve food security. He was my first boss. I joined CIP in January 1973 (when it was still a small institute finding its feet), and just after it had become one of the first international agricultural research centers (often referred to as IARCs) sponsored by the nascent Consultative Group on International Agricultural Research or CGIAR.

CGIAR? As Bill Gates wrote in 2019: Never heard of CGIAR? You’re not alone. It’s an organization that defies easy brand recognition . . . It’s too bad that more people don’t know about CGIAR. Their work to feed our hungry planet is as important now as it’s ever been.

The CGIAR was founded on 19 May 1971 and also celebrates its 50th anniversary this year. It was set up as an informal organization of countries, international development agencies and private foundations [1] that cooperate in underwriting a network of independent, international agricultural research institutes, and originally co-sponsored by the World Bank, the Food and Agriculture Organization (FAO), the United Nations Development Program (UNDP), and the International Fund for Agricultural Development (IFAD).

The CGIAR has undergone a series of transformations since its founding and has, in my opinion, spent far too long navel gazing over the past 30 years about what its role should be—and those of the constituent centers—and how all that research effort could or should be organized. Goodness knows what the opportunity costs (and the actual costs) of interminable consultations, meetings, and the like have been.

Despite the organizational and funding bumps (and scientific challenges, sometimes failures) in the 50 year road, the CGIAR and the IARCs it supports have been incredibly successful. The return on investment in international agricultural research (particularly with regard to plant breeding) has been impressive, not only in monetary terms, but more crucially in terms of the numbers of people who were brought out of poverty or who avoided chronic food shortages.

Let me again quote Bill Gates: No other institution has done as much to feed our world as CGIAR.


Today, there are 15 IARCs in the CGIAR network in 14 (mainly tropical or sub-tropical) countries across the globe, although two, Bioversity International in Rome and the Centro Internacional de Agricultura Tropical (CIAT) in Cali, Colombia, have recently formed an Alliance under a single Director General and Board of Trustees.

Four of them pre-date the CGIAR, but were immediately adopted in 1971 once the CGIAR was up and running.

The oldest, at 61 years, is the International Rice Research Institute (IRRI), founded in 1960 [2] in the Philippines, where I happily (and productively) spent almost 19 years from 1991 to 2010. IRRI was responsible for the Green Revolution in Asia, releasing many high-yielding, short-strawed rice varieties (perhaps the most famous of which was IR8) that were widely adopted because they out-yielded the varieties that farmers were growing in the 1960s.

The International Wheat and Maize Improvement Center (known as CIMMYT by its Spanish acronym) is located just northeast of Mexico City, and was founded in 1966. It was the institutional home for many years of that pioneer of the Green Revolution and 1970 Nobel Peace Laureate, Dr Norman Borlaug.

Two regional centers, the International Institute of Tropical Agriculture (IITA, in Ibadan, Nigeria) and CIAT, were founded in 1967 in 1970, respectively. Unlike the crop specific mandates of IRRI and CIMMYT (on rice, wheat, and maize), these two centers had a broader ecogeographic focus on a range of crop and livestock systems.

The International Centre for Research in the Semi-Arid Tropics (ICRISAT, located in Hyderabad, India) was established in 1972, and along with CIP was adopted by the CGIAR that same year.

By 1980, there were 13 centers, and five more were added by 1990. There then followed a period of consolidation. Two centers in Ethiopia and Kenya working on livestock and animal diseases merged. A banana and plantain network in France was absorbed into the genetic resources institute (IPGRI, now Bioversity International) in Rome, and in 2002 another institute, ISNAR (in The Hague, Netherlands) was shut down.

So for the past decade and a half, the CGIAR system has stabilised around 15 centers, and to quote Bill Gates once again: . . . most referred to by their own confusing acronyms . . . leaving the uninitiated feeling as if they’ve fallen into a bowl of alphabet soup.

It was a privilege to work at CIP (1973-1981) and IRRI (1991-2010), over 27 years in total. And even while I was teaching at the University of Birmingham between 1981 and 1991, I retained research links with and visited CIP, and also carried out other consultancy work with it and other centers.


Much of the early CGIAR-sponsored research was directed towards increasing crop productivity, breeding new crop varieties that yielded better than existing varieties as I mentioned above in relation to rice. And delving into the large and impressive—and genetically diverse—genebank collections that the centers had set up as a safety net to preserve heritage varieties. There was increased adoption of new varieties by farmers seeking to improve their livelihoods, and old varieties had, in many instances, been cast aside. Who could question their desire to improve their lots, to feed their families, and send their children to school with the hope and expectation that education would help bring them out of poverty and a better life than as a subsistence farmer?

Then, in the 1980s and 1990s, more attention was focused on natural resources such as soils and water, and how these could be managed sustainably. And of course, lying at the heart of everything (which I’m bound to stress, given my background in conservation and use of plant genetic resources) are the eleven center genebanks, the largest and most important network of genebanks worldwide, safely conserving more than 760,000 samples (known as genebank accessions) of cereals, grain legumes, forages, tree species, root and tuber crops, and bananas. This network is supported in part through the Crop Trust.

By the 1990s the early CGIAR model of productivity-focused research was being challenged and, as I mentioned above, research was expanding on the sustainability of natural resources. Furthermore, even the role of international centers was being questioned, whether they were needed any longer. National programs were becoming stronger and less dependent on the international centers for resources and research support, although training of agricultural research professionals remained an important partnership outcome. The centers produce what are known as international public goods, having an impact across multiple locations and sites. The sharing of breeding lines and new varieties is perhaps one of the best examples. National program research is much more site specific.

The international framework within which the centers operated was also becoming more challenging. The Convention on Biological Diversity (CBD) came into force in 1993, followed by the International Treaty on Plant Genetic Resources for Food and Agriculture adopted in 2004. These directly affected how centers could maintain their collections of genetic resources and share them globally. On the financial front there was growing concern about the long-term funding to support these collections that has now been resolved, in part, by the intervention of the Crop Trust and its grants to support the center collections in perpetuity from the Endowment Fund.

Then, in September 2000, at its Millennium Summit, the United Nations General Assembly adopted the eight Millennium Development Goals (MDGs) setting out an ambitious agenda to be reached by 2015. A review of progress made in 2015—not as much as hoped for—culminated in the adoption of 17 Sustainable Development Goals (SDGs) by UN Member States.

Clearly the adoption of the MDGs, followed by the upgraded SDGs was something that the CGIAR could not ignore, it it wanted to remain relevant. Centers quickly set about explaining how CGIAR-supported researched aligned with and contributed towards achieving these important development goals.

Research across the CGIAR system was reorganized into a series of programs and other initiatives. In its latest reincarnation, One CGIAR is a dynamic reformulation of CGIAR’s partnerships, knowledge, assets, and global presence, aiming for greater integration and impact in the face of the interdependent challenges facing today’s world . . . providing scientific innovations for food, land and water systems. Here is an example how IITA . . . has participated in the unfolding plans and is strategically positioned to contribute to the One-CGIAR agenda in sub-Saharan Africa.

I should also add that, importantly, response to climate change (and its impact on agriculture and natural resources) has been an important element of the CGIAR agenda for many years now.

I don’t wish to sound cynical, but I think the jury is still out. The CGIAR hasn’t exactly covered itself in glory in its previous attempts to reorganize. When it comes to change management, it has, in my opinion, taken its collective eye off the ball in terms of the system’s greatest assets: the actual centers and their loyal staff. A former colleague recently shared with me a piece he’d written describing the various attempts to restructure the CGIAR over the years: A solid long-term programme of change management must be put in place which addresses the required culture change needed on merging institutions with long, proud histories and staff who may have served for decades becoming deeply steeped in a given institutional culture.


So, how was research organized and funded? The two are obviously not independent one from the other.

Back in the day, centers received block grants or ‘core’ funding (often referred to as ‘unrestrictive funding’) from donor countries and agencies through the CGIAR. Being independent of one another (and the CGIAR not having any legal identity then) centers set their own research agendas, reporting annually on what had been achieved (outcomes and impact being the name of the game) and how the funding had been spent. The enthusiasm for the IARC model in the 70s and 80s was reflected in the growth of support, and the expansion of the CGIAR agenda to include new centers.

But around the mid-90s, this funding model was under threat. Donors demanded more accountability for their funds, and to influence directly the actual research that centers carried out. They did this by resorting to competitive funding for defined and time-limited project grants, which also meant more time and effort to prepare, submit, and account (scientifically and financially) for these projects than centers had been accustomed to. But it was a model that was here to stay. Unrestricted funding is now almost a thing of the past.

When I left research in 2001 to become IRRI’s Director for Program Planning and Communications (DPPC) I took on responsibility for the institute’s research project portfolio. Not what we did; that was the role of the Deputy Director General-Research. My role, among other responsibilities, was to liaise with donors and keep them happy and, in doing so, grow the institute’s budget (which we did very successfully).

When centers were solely responsible, as it were, for their research agendas, they had to accommodate project funding into their research strategic plans—their research blueprints. But it’s important to emphasise that IARC research was never (or hardly ever) science for the sake of science. It was scientific research with a purpose, aimed at real-life issues and constraints. And it had to be the right science of the highest quality. Not that this lofty goal was always achieved.

When I arrived at IRRI in July 1991, its research was organized through the notoriously difficult matrix management, which does have its conceptual appeal. The research program had two axes: programs on one axis, and the contributing scientific divisions on the other. The programs set the research agenda, and the research divisions contributed the scientific expertise. Or, as another former colleague, and head of IRRI’s Plant Pathology Division, Tom Mew explained it (and here I paraphrase): the programs choose the right science (i.e., what needs to be done) and the divisions do the science right. What I soon realised was that at CIP (back in 1973) there was a form of matrix management, with the research arranged in Research Thrusts. But IRRI’s not-altogether-successful implementation of matrix management was probably the first real attempt to employ this approach. It depends on an equal balance (and some tension) between program leaders and division heads. And it was my perception that a couple of long-serving division heads didn’t take kindly to any ‘erosion’ of their influence under matrix management and therefore did not support its implementation as enthusiastically as one might have expected. I’ll say no more.

In this diagram, I have assigned illustrative percentage values of how each research division allocated its resources (particularly staff time) to each of the rice ecosystem-focused programs.

Just a few years later, as the CGIAR navel gazing began in earnest, the research agenda was being reformulated in system-wide programs, organized in a type of matrix management (read ‘centers’ for ‘divisions’) and involving many more players outside the CGIAR as full partners in the research. I should mention that healthy and extensive research partnerships between centers and other institutions had existed even from the early days. However, external players are now much more intimately involved in determining (and implementing) the research.


Since I’ve been retired for eleven years, I’ll be interested to see—from afar—how the CGIAR and its centers fare. While I feel that both have lost their way somewhat, I still have faith that the system will eventually come good, and bring about outcomes and impacts that were the signatures of the system’s heyday. Hopefully, there are better days ahead for international agricultural research. Whether that means another half century or less remains to be seen. Getting past the next decade will be challenge enough.


[1] The Bill & Melinda Gates Foundation is now one of the largest donors to the CGIAR.

[2] The agreement between the Government of the Philippines and the Ford and Rockefeller Foundations was signed on 9 December 1959. IRRI’s Board of Trustees met for the first time on 14 April 1960 and approved the institute’s constitution an by-laws. The 1960 date is often cited as the foundation date.

 

Exploring the mysteries of sex . . . and taking control!

I’ve been fascinated with sex (especially controlled sex) since my undergraduate days at the University of Southampton between 1967 and 1970. We were the socially permissive flower power generation.

But before you get too excited about this post’s content, I need to point out that, as a former botany student, I’m referring to sex among plants! And plant breeding. The real flower power!


Joe Smartt and Edgar Anderson

I guess it all started with two final year honours course on plant speciation (how different species evolve) and plant breeding, taught by geneticist Dr Joe Smartt. It was through the first that I discovered the beauty of introgressive hybridization (a mechanism that blends the gene pools of separate species; see a diagrammatic explanation in this post), a concept first expounded by another of my botanical heroes, Dr Edgar Anderson. And, there was this transformative book to dip into: Variation and Evolution in Plants (published 1950) by another great American botanist, G Ledyard Stebbins. In Joe’s introduction to plant breeding, we followed yet another classic text: Principles of Plant Breeding by American plant breeder and geneticist, Robert W Allard.

Trevor Williams

And when I moved to the University of Birmingham as a graduate student in September 1970, to study for a Master’s degree in plant genetic resources, Trevor Williams taught a fascinating course on plant variation, emphasising their breeding systems, and how understanding of these was important for the conservation and use of genetic resources. Much of my career subsequently was then spent studying variation and breeding systems in two important crop species, potatoes and rice, and a minor legume species, the grasspea.


Plants reproduce in the most weird and wonderful ways. If they didn’t, humanity’s days would be numbered. Where would we be if wheat and rice plants failed to produce their grains, the potato its underground treasure of tubers, or the banana those abundant hands of green fruits? No wonder in times past folks celebrated a Harvest Festival each autumn to give thanks for a successful harvest.

Beautiful acorns on the pedunculate oak, Quercus robur

You only have to look about you in late summer, as I did each day on my walks last year, to see Nature’s bounty all around—the consequence of plant sex. The trees and bushes were dripping with fruit—2020 was a mast year (as I have written about before). I don’t think I’ve seen such a year for acorns on the oak trees. And the chestnuts, hazels, and so many others. Such exuberant fecundity!


Have you ever looked closely at a ‘typical’ flower? Well, for the most part you can see the female pistil(s) comprising the style, stigma, and ovary, and the male stamens that carry the pollen.

However, there are many variations on this basic theme, different arrangements of the sex organs, even separate male and female flowers on the same plant (known as monoecy; maize is a good example) or separate plants (dioecy; holly). Differences in plant reproductive morphology promote self fertilization or cross fertilization. In addition, there is a host of physical and genetic mechanisms to promote or prevent self fertilization, as well as limiting sex between different species. All of this is aimed at ensuring a next generation of plants, and the one after that, and so on.

Plants attract a host of pollinators: visiting insects such as bees and moths, even some nectar-feeding marsupials and bats. I watched a remarkable sequence on David Attenborough’s latest blockbuster series, A Perfect Planet a few nights ago, about the fascinating pollination role of fig wasps.

Then I came across this tweet. Cockroaches of all creatures!

Wind pollination is a common feature of many grasses. However, several wheat and rice species, for example, promiscuously dangle their stamens apparently seeking cross fertilization. But they have often self fertilized before their flowers open. That’s not to deny that some cross pollination does occur in these species, but it’s generally the exception.

Some plants appear to reproduce sexually, but they have got around actual sex through a mechanism known as apomixis. These plants produce seeds but not following the normal fertilization process, so each seedling is a genetic copy of the ‘mother’ plant.

Berries on a diploid potato species, Solanum berthaultii

Other species have given up sex (almost) altogether, instead reproducing vegetatively with the ‘offspring’ being genetically identical (or essentially identical) to the mother plant. In others, like the potato, propagation is primarily through tubers. Yet, in the Andes especially where potatoes were first domesticated, many varieties are extremely sexually fertile, and produce berries rather like small tomatoes, although they are inedible. They contain lots of small seeds that we often refer to as true potato seed or TPS. In fact, in one experiment I observed at the International Potato Center (CIP) in Peru where I worked during the 1970s, a colleague of mine recorded a particular variety known as Renacimiento producing more than 20 t/ha of berries, in addition to about 20 t of tubers.


Anyway, I digress somewhat. During the years I was active scientifically (before I joined the ranks of senior management at the International Rice Research Institute in the Philippines, IRRI in the Philippines), I looked into various aspects of reproductive biology of several species.

In my doctoral research, carried out in the Andes of Peru, I investigated the breeding relationships between potato varieties with different numbers of chromosomes. The potato we consume almost on a daily basis (at least in my home) is known scientifically as Solanum tuberosum, and has four sets (48 in total) of chromosomes. It is what we call a tetraploid. Many other potato species have only two sets or 24 chromosomes, and are known as diploids. The tetraploid forms are mostly self fertile; diploids, on the other hand, have a genetic system of self incompatibility, and will only produce seeds if pollinated with pollen from a different genetic type.

This or similar system of self incompatibility is known from other species, like poppies for example. Anyway, the outcome is that ‘self’ pollen will not germinate on the stigma. The two images below (of various pollinations among wild potatoes), show a typical compatible pollination and fertilization event. Lots of pollen grains have stuck to the stigma, have germinated and grown the length of the style to reach the numerous ovules in the ovary.

In these next images, showing incompatible pollinations, few pollen grains remain on the stigma, not all germinated, and those that did, grew erratically. A few pollen tubes may reach the ovules but compared to the compatible pollinations, they are many fewer.


In the 1970s, one of my colleagues at CIP, Chilean breeder/agronomist Primo Accatino, championed the use of TPS as an alternative to propagation from seed tubers. One of the weak links, as it were, in any potato production cycle is the availability and cost of disease-free seed tubers. So TPS was seen as potentially fulfilling a gap in many developing countries that had neither the infrastructure nor staff to support seed potato production.

As I mentioned earlier, the common potato is a tetraploid with four sets of chromosomes, and this complicates the genetics and breeding. Breeding at the diploid level could be more straightforward. At least that was the hope and the challenge when I embarked on a project to produce TPS lines through inbreeding diploid potatoes and single seed descent. Funded by the British government, it involved scientists at the University of Birmingham (where I had joined the staff in 1981), the former Plant Breeding Institute in Cambridge, and CIP in Peru.

Was this just a pipe dream? Perhaps. Before developing the project concept, I’d had extensive discussions with my colleague at Birmingham, geneticist Dr Mike Lawrence who worked on self incompatibility in poppies (that has a similar genetic system to that in potatoes). His experience with poppies showed that if one tried long and hard enough, it was possible to break the self incompatibility.

Flowers of Solanum chacoense

We tried—and ultimately failed—closing the project after five years. We decided it would take just too much investment to make progress. If only we’d had available then what are now helping to transform potato breeding: self compatible diploid lines. At the end of the 1990s, scientists working at the USDA potato collection in Sturgeon Bay, Wisconsin identified self compatible lines in the widespread wild species Solanum chacoense. The Sli gene that confers self compatibility is apparently more widespread than previously thought, and has now been bred into diploid lines. Had we had those self compatible lines back in the 1980s, our work would have perhaps have reached a better conclusion.


When I moved to the Philippines in 1991 to head IRRI’s Genetic Resources Center (GRC), I had a collection of around 100,000 different lines of rice, cultivated and wild, to conserve in the institute’s International Rice Genebank.

With my colleagues in GRC, Dr Lu Bao-Rong, Amita ‘Amy’ Juliano and Dr Ma Elizabeth ‘Yvette’ Naredo, I spent several years investigating the breeding relationships between the cultivated forms of rice, Oryza sativa from Asia, and O. glaberrima from West Africa, and the closest wild Oryza species with a similar AA genome. We made thousands of crosses with the aim of understanding not only the breeding relationships, which is important to be able to better use wild species in rice breeding, but also to understand the taxonomy of wild and cultivated rices.

Pollinations (L) in the genebank screenhouse among AA genome species from Asia, Australia, and the New World, and (R) a crossing polygon from those pollinations expressed in terms of spikelet fertility.

This work led to several scientific publications, which you can access here: just look for publications with our names.


Another aspect of plant sex, important for genebank managers, is how the environment can affect plant fertility. While the seeds of many species (including rice and potatoes) can be stored at a low temperature (typically -18ºC) and for decades if not longer, it is essential that only the best seeds are placed in a genebank for long term conservation. That means ensuring that the growing conditions are the best possible to produce seeds of high quality—and in abundance—during an initial multiplication or later on for rejuvenation after some years of storage, if seed stocks are running low, or there are signs that seed viability may be declining.

At IRRI, in Los Baños south of Manila, we were faced with managing a large germplasm collection of rice lines from all over Asia, from Africa, and South America as well. And these had been collected over a very broad latitudinal range, while Los Baños sits at around 14ºN. We were attempting to grow in a single location many different rice lines, some of which had evolved under more temperate conditions, under different temperature regimes and daylengths.

Kameswara Rao

With my colleague Dr Kameswara Rao (and Professor Richard Ellis from the University of Reading, UK) we spent three years carefully analyzing the effects of different growing environments on seed quality for conservation. Just look for publications here under our names to check out what we achieved. The important changes we made to how we grew rice lines for optimum seed quality have endured until today, although (as I have reported elsewhere) changes to post-harvest handling of seeds have been improved through the work of former IRRI seed physiologist, Dr Fiona Hay.


So, as you can see, there are many different, and interesting, facets to plant sex. And as plant breeders and gene conservationists, we aim to exploit the idiosyncrasies of each species to produce more productive crop varieties or ensure the long term survival of varieties that no longer find favor with farmers, or wild species whose habitats are threatened through agricultural expansion, increasing urbanization, or climate change.


 

I was doctored . . . but the benefits were long-lasting

Philosophiae Doctor. Doctor of Philosophy. PhD. Or DPhil in some universities like Oxford. Doctorate. Hard work. Long-term benefits.

Forty-five years ago today I was awarded a PhD by the University of Birmingham. As a freshman undergraduate at the University of Southampton in October 1967, I was naïvely ignorant of what a PhD was [1]. And I certainly never had any ambition then or inkling that one day I would go on to complete a doctorate in botany. Let alone a study on potatoes!

Although registered for my PhD at the University of Birmingham, I actually carried out much of the research while working as an Associate Taxonomist at the International Potato Center (CIP) in Lima, Peru. My thesis was supervised by eminent potato experts Professor Jack Hawkes, head of the Department of Botany (later Plant Biology) in the School of Biological Sciences at Birmingham, and Dr Roger Rowe, head of CIP’s Department of Breeding & Genetics.

Jack Hawkes (L) and Roger Rowe (R)

On 12 December 1975 I was joined at the Birmingham graduation ceremony or congregation by Jack and Dr Trevor Williams (on my left below, who supervised my MSc dissertation on lentils). Trevor later became the first Director General of the International Board for Plant Genetic Resources (now Bioversity International). I’d turned 27 just a few weeks earlier, quite old in those days when it wasn’t all that unusual for someone to be awarded a PhD at 24 or 25, just three years after completing a bachelor’s degree. My research took four years however, from 1971, when I was awarded the MSc degree in genetic resources conservation at Birmingham.

The moment of being ‘doctored’ in the university’s Great Hall.

Sir Peter Scott, CH, CBE, DSC & Bar, FRS, FZS (by Clifton Ernest Pugh, 1924–1990)

As a biologist, it was particularly special that my degree was conferred by one of the most eminent naturalists and conservationists of his age, Sir Peter Scott (son of ill-fated Antarctic explorer Captain Robert Falcon Scott), who was Chancellor of the University of Birmingham for a decade from 1973.


According to the Birmingham PhD degree regulations today, a candidate must enter on a programme, normally of three years’ duration, in which the key activity is undertaking research, combined with appropriate training. Registered students must produce a thesis which makes an original contribution to knowledge, worthy of publication in whole or in part in a learned journal.

It was much the same back in the 1970s, except that we had eight years from first registration to submit a thesis. By the end of the 1980s this had already been reduced to four years.

Like the majority of PhD theses I guess, mine (The evolutionary significance of the triploid cultivated potato, Solanum x chaucha Juz. et Buk.) was a competent piece of original research, but nothing to write home about. However, I did fulfil the other important criterion for award of the degree as three scientific papers from my thesis research were later accepted for publication in Euphytica, an international journal of plant breeding:

  1. Jackson, MT, JG Hawkes & PR Rowe, 1977. The nature of Solanum x chaucha Juz. et Buk., a triploid cultivated potato of the South American Andes. Euphytica 26, 775-783. PDF

  2. Jackson, MT, PR Rowe & JG Hawkes, 1978. Crossability relationships of Andean potato varieties of three ploidy levels. Euphytica 27, 541-551. PDF

  3. Jackson, MT, JG Hawkes & PR Rowe, 1980. An ethnobotanical field study of primitive potato varieties in Peru. Euphytica 29, 107-113. PDF


It took me just over six weeks to write my thesis of about 150 pages. I achieved that by sticking to a well-defined daily schedule. I was under a tight time constraint.

Having returned from Peru at the beginning of May 1975, I still had a couple of things to wrap up: checking the chromosome numbers of some progeny from experimental crosses, then preparing all the hand drawn diagrams and maps (fortunately my cartographic skills from my geography undergraduate days at the University of Southampton placed me in good stead in this respect) and photographs. My thesis was typed on a manual typewriter; none of that fancy word processing and formatting available today. Nevertheless, I did submit my thesis by the mid-September deadline to meet the December graduation. I could hardly return to CIP by the beginning of the New Year without a PhD in my back pocket.

Looking at my thesis 45 years on, it does seem rather ‘thin’ compared to what PhD students can achieve today. In the early 1970s we didn’t have any of the molecular biology techniques that have become routine (essential even) today, to open up a whole new perspective on plant diversity, crop evolution, and crop domestication that were the basic elements of my thesis research.

Back in the day, it was normal for a PhD thesis to be examined by just one external examiner and an internal university one, usually from a candidate’s department and often the person who had supervised the research. Today the supervisor cannot be the internal examiner at many if not all universities in the UK, and it has become more common for a PhD student to have a committee to oversee the research.

So, towards the end of October 1975 I met with my examiners for what turned out to be a viva voce of over three hours. It got off to a good start because the external examiner told me he had enjoyed reading my thesis. That allowed me to relax somewhat, and we then embarked on an interesting discussion about the work, and potatoes and their evolution in general. The examiner found just one typographical error, and I corrected that immediately after the viva. I then sent the thesis for binding and official submission to the university library (where it languishes on a shelf somewhere, or maybe reduced to just a microfilm copy).


On the evening of my examination I rang my parents to tell them the good news, only to discover that my dad had suffered a heart attack earlier in the day. That certainly but a damper on the exhilaration I felt at having just passed my final exam – ever! Dad was resting, but expected to make a full recovery. By December, when the congregation was held, he was back on his feet, and he and mum attended the congregation. Having been allocated only two guest tickets, Steph gave hers up so mum and dad could attend.

They gave me a Parker fountain pen, engraved with my name and date, as a graduation present. I still have it.


So, I completed a PhD. Was it worth it? I actually waxed lyrical on that topic in a blog post published in October 2015. When the idea of working in Peru was first mooted in February 1971, it was intended to be just a one year assignment from September. Registering for a PhD was not part of the equation. But circumstances changed, my departure to Peru was delayed until January 1973, so Jack registered me for a PhD, setting me on a path that I have never regretted.

In any case, once I was established at CIP in Lima, I quickly came to the viewpoint that a career in international agricultural research was something I wanted to pursue. And without a PhD under my belt that would have been almost impossible. The PhD degree became a sort of ‘union card’, which permitted me to work subsequently in Central America, as a lecturer at the University of Birmingham for a decade, and almost 19 years up to my retirement in 2010 at the International Rice Research Institute (IRRI) in the Philippines in roles managing the world’s largest genebank for rice, and then as one of the institute’s senior management team.


[1] Unlike our two daughters Hannah and Philippa. They grew up in a home with parents having graduate degrees (Steph has an MSc degree in genetic resources from Birmingham). And when we moved to the Philippines in 1991, almost every neighbor of ours at IRRI Staff Housing had a PhD degree. So although it was never inevitable, both went on to complete a PhD in psychology (although different branches of the discipline) in 2006 and 2010 respectively, at the University of Minnesota and Northumbria University.

L (top and bottom): Phil, Hannah, and Steph after the graduation ceremony; Hannah with her cohort of graduands, Emily and Michael in Industrial & Organizational Psychology on 12 May 2006. R (top and bottom): Phil’s graduation at Northumbria University on 11 December 2010.

Growing potatoes – growing professionally

November 1980. After almost five years (from April 1976) Steph and I were preparing to leave Costa Rica, the small Central American country sandwiched between Nicaragua to the north and Panama to the south. Our elder daughter Hannah was born there in April 1978. But our time in that beautiful country was coming to an end, and we were headed back to Lima.

So how come I ended up in Costa Rica working on potatoes, since agriculture there is dominated by rice and beans? And coffee and bananas, of course. Potatoes are small beer [1].

Let me explain.

It all started in January 1973, when I joined the staff of the International Potato Center (CIP) in Lima and, in the process, fulfilled an ambition I’d had since I was a small boy: to visit Peru.

During the three years I was based in Lima, working as an Associate Taxonomist and helping to conserve CIP’s large collection of native Andean potato varieties, I completed research for my PhD degree, awarded by the University of Birmingham in December 1975.

Earlier that year, in April, I returned to Birmingham to complete the residency requirements for my degree, and to submit my thesis (which was examined in October). However, before leaving for the UK, I had discussions with CIP’s Director General, Richard Sawyer, about rejoining CIP after I had completed my PhD. I wanted to broaden my horizons and learn more about and contribute to potato production around the world, rather than continue working with the potato collection or taxonomy research. He offered me a post-doctoral position in CIP’s Outreach Program, being posted to one of the regional offices.

Exploring options
In 1975, CIP’s Region II program, encompassing Mexico, Central America, and the Caribbean, had its regional office in Toluca, Mexico (about 64 km west of Mexico City). Potatoes are not a major crop in this region—maize and beans being the staples—although they are locally and economically important in each country.

It was a year of transition. CIP’s regional representative at that time, Ing. Agr. MS Manuel J. Villareal González, had just been named leader of Mexico’s national potato program (in Toluca). My Lima colleague, Ing. Agr. MS Oscar Hidalgo, a plant pathologist, took over as Region II leader and moved to Mexico.

Manuel Villareal and Oscar Hidalgo

The other members of the CIP team in Toluca were local support staff: José Gómez and secretary Guillermina Guadarrama, formerly employees of the Rockefeller Foundation potato program, and some field and glasshouse technicians.

Jose and Guillermina

CIP management proposed setting up a sub-regional office in Costa Rica, without yet deciding what its programmatic responsibility and research focus might be.

To explore various possibilities, Steph and I were asked to visit Costa Rica and Mexico in April on our way back to the UK. And that’s what we did. I should add that I was nervous the whole trip. Why? I was carrying a briefcase full of my thesis research data. I was paranoid that some light-fingered individual might relieve me of the briefcase. There was no computer cloud storage in those days, let alone floppy disks or flash drives.

For many years it was not possible to fly direct between Lima and San José, the capital of Costa Rica. The journey inevitably required a stop-over in Panama City, usually overnight. On our trip north we stayed at the airport hotel but had time enough to explore parts of the city center (not the Canal Zone, unfortunately). And that’s when we had our first McDonald’s hamburgers. I have this distinct memory of my immediate boss, head of CIP’s Dept. of Plant Breeding & Genetics, Dr. Roger Rowe, coming back to Lima from one of his home leaves in the USA and telling us all about these ‘new’ hamburger joints that we should try when we had the opportunity. I had thought that, in 1975, McDonald’s was new to Panama, but from what I have found on the internet, McDonald’s opened its first restaurant there in 1971. Notwithstanding, it was a first for us.

Drs. Luis Carlos Gonzalez (L) and Rodrigo Gamez (R)

My Lima colleague, bacteriologist and head of CIP’s Dept. of Plant Pathology & Nematology, Dr. Ed French made arrangements for us to visit with fellow bacteriologist Dr. Luis Carlos Gonzalez Umaña and plant virologist Dr. Rodrigo Gámez Lobo (who, in later years went on to found and become President of the renowned INBio, the Instituto Nacional de Biodiversidad) at the University of Costa Rica.

Luis Carlos and Rodrigo made us very welcome and, with the leader of the Costarrican potato program, Ing. Agr. Luis Fernando Cartín, took us to see potatoes growing on the slopes of the Irazú Volcano east of San Jose, to labs in the university, and, as a side ‘tourist’ visit, to the Instituto Clodomiro Picado nearby where anti-snake venom serum is produced on a large scale (often in horses). Costa Rica has more than 20 highly venomous snake species.

I think we spent about four days in Costa Rica before travelling on to Mexico. We certainly came away from Costa Rica with a favorable impression. San José is dominated by a stunning landscape of volcanoes (Poás, Irazú, Turrialba), some active or recently active, covered in lush, tropical forest and, on the lower slopes, coffee plantations for which the country is famous. Back in the day, San José was a small city of about 456,000 inhabitants.

In Mexico, we stayed with our friends from Lima, John and Marian Vessey who had moved there in 1974 to work at the International Maize and Wheat Improvement Center (CIMMYT) near Mexico City. Apart from a visit to the potato program in Toluca, we had the opportunity for some sightseeing, with a memorable visit to the pre-Columbian pyramids at Teotihuacán about 32 km north from CIMMYT.

Steph and me on the top of the Sun Pyramid looking towards the Moon Pyramid at Teotihuacan (April 1975).

Ken Brown

Settling on Costa Rica
Steph and I returned to Lima just after Christmas, all set to move on later in 1976. But where? A decision had not yet been made about Costa Rica.

Meanwhile, a new Director of CIP’s Outreach Program, Dr. Ken Brown, had been appointed while I was back in the UK, and joined CIP in January. In due course, Outreach became the Regional Research Program. As both Ken and his family (wife Geraldine, and five boys) and Steph and I were staying in the center’s guest house for several weeks, we got to know the Browns quite well.

Prof. Luis Sequeira

In order to hasten our move to Region II, we needed to identify an appropriate international institute to host my posting in Costa Rica. So, Roger Rowe, Ed French, and I flew to Costa Rica for a week in early January [2]. There we met with Luis Carlos and Professor Luis Sequeira from the University of Wisconsin at Madison, a world renowned plant bacteriologist (and Costarrican by birth) with whom Luis Carlos had completed his PhD, who happened to be visiting family at the time.

We visited sites on the Irazú Volcano and near Alajuela (a regional town northwest of San José) where Luis Carlos was testing potato breeding lines for resistance to bacterial wilt.

We also visited the Tropical Agricultural Research and Higher Education Center (CATIE), a regional center in Turrialba dedicated to research and graduate education in agriculture, and the management, conservation and sustainable use of natural resources, established originally in 1942 as the headquarters of the Inter-American Institute for Agricultural Sciences (IICA).

The CATIE ‘Henry Wallace’ administration building

CATIE plant pathologist Dr. Raul Moreno from Chile explains the focus of the center’s farming systems research to (L-R) Luis Sequeira, Ed French, and Roger Rowe.

Turrialba is a small town just over 70 km due east of San José, although at a much lower elevation—around 650m compared with almost 1200m in the city.

The drive to Turrialba from San José via Cartago was not straightforward. Until around 1978 (or maybe later) the section between Cartago and Turrialba was a dirt road, and quite dangerous. It was also the main route from the Caribbean port of Limón to San José so there was a continual stream of heavy (and noisy) trucks travelling between the two cities. The road passed through a zone of frequent low cloud (neblina) with reduced visibility, sometimes quite severely. And, passing through several sugarcane plantations, there would be tractors towing ‘trains’ of carts carrying harvested cane snaking along the road to local sugar mills, and often without displaying any hazard lights. With the state of the road, the frequency of the heavy traffic, and limited visibility, one could get stuck behind one of these slow-moving ‘trains’ for many kilometers. Very frustrating!

At CATIE, we met with the Acting Director, Dr. Jorge Soria (a cocoa breeder) to discuss signing an agreement between CIP and CATIE that would allow me to work from CATIE as a regional base, and set up a research program to breed potatoes for hot humid climates. Turrialba has an average annual temperature of 22.9°C (73.2°F), and more than 2854 mm (or 112.4 inch) of rainfall per year. The wettest months are May to December, with heaviest rainfall in June and July. This, we assumed, would be an ideal, if not challenging environment in which to attempt to grow potatoes.

Anyway, to cut a long story short, an agreement was signed between CIP and CATIE, under which I was to be attached to CATIE’s Crops Department. It was also agreed that CIP would contribute to CATIE’s cropping systems program (funded through USAID’s Regional Office for Central America and Panama, ROCAP) once suitable potato varieties had been identified.

Steph and I headed to Costa Rica in early April 1976, and we remained there until the end of November 1980. I’ve been back there just once, in 1997.

Getting started in Turrialba
Back in 1976, I can’t deny that I was rather daunted about setting out on my own. I’d turned 27 only the previous November. And communicating with colleagues back in Lima was not straightforward, as I have described in another post.

We didn’t plant our first potato experiments in Turrialba until May 1977 to check whether any varieties would yield under the warm and humid conditions there. Instead, we were faced with bacterial wilt, a devastating disease of potatoes and other related crops like tomato (as well as bananas!), about which I have blogged before.

Between arriving in Costa Rica the previous year and then, I’d had to renovate screenhouses for our research, acquire a vehicle (that took several months), hire a research assistant and a secretary, as well as attend to other regional duties that Oscar Hidalgo asked me to undertake. In fact within a few weeks of arriving in Costa Rica he whisked me off to Mexico for a month to participate in a potato production course, leaving Steph on her own in (to her) a very strange Turrialba.

Within a couple of months or so, I’d hired a young man, Jorge Aguilar Martinez, as my research assistant. Jorge lived in Santa Rosa, a small village just outside Turrialba, where his father grew coffee on a small farm (finca). Jorge was 20 in June that year, recently married to Carmen (a secretary in the animal husbandry department at CATIE), and with a small boy, Leonardo (who is now Head of Information and Communication Technology at CATIE).

Jorge Aguilar

Jorge had applied for a position in the Crops Department at CATIE before I arrived there, but there were no vacancies. He seemed an ideal candidate: keen, interested to get on in the world. He was studying at night at the local campus of the University of Costa Rica for a qualification in business management. Apart from his coffee background, he had no field experience in crop agronomy, let alone potatoes! But Jorge was a quick learner. In fact, we learned a lot together how to grow potatoes. What particularly impressed me about him was his willingness to innovate, look for solutions. And have a flexible attitude to how we worked. We got the job done, and that often meant leaving for our experimental field plots higher up one of the nearby volcanoes before daybreak, and not returning to Turrialba until late in the afternoon once everything had been completed.

One of our isolation plots for seed multiplication high on the slopes of the Turrialba volcano.

Then a young woman, Leda Avila, from Alajuela joined my project as a bilingual secretary. Her support was fantastic. She had a bubbly and confident character, and was always curious to understand exactly what we were doing in the field. One day she asked me if she could join us on one of our visits to experimental plots we had planted on the slopes of the two local volcanoes, Irazú and Turrialba. She told me that as she typed research reports for Lima she had no idea what the work involved, but wanted to find out. So, one day, and donning her field boots, Leda joined the CIP team in the field.

She was so enthusiastic about her first field experience that she would join us thereafter as and when circumstances permitted. Much to the consternation of our CATIE colleagues. They’d never heard of such a thing. But to me, it just made sense to include Leda as a key member of the team.

Moisés Alonso Pereira

In late 1977, Oscar Hidalgo registered for his PhD at North Carolina State University, and left for the USA. On Ken Brown’s recommendation, Richard Sawyer asked me to take over leadership of the Region II Program. As a consequence, my travel schedule increased significantly (especially as we were developing an important cooperative program on potatoes involving six countries, PRECODEPA), and I had to find permanent technical support for Jorge. I hired Moisés Alonso Pereira as Research Technician, who was 17 or 18 then.

Searching for resistance to bacterial wilt (caused by the pathogen Ralstonia solanacearum) and ways to control it became an important focus of our research in Turrialba. But we also developed rapid multiplication techniques for seed production, and that work accelerated once my colleague and dear friend, Jim Bryan, joined the project in Costa Rica for one year in the late seventies, seen in some of the photos below passing on his encyclopedic knowledge about seed production and rapid multiplication techniques to Jorge and others. We also trained potato scientists from neighboring countries about these techniques through PRECODEPA.

At the same time as we were developing these rapid multiplication methods, my colleagues Bob Booth and Roy Shaw in Lima were adapting diffuse light potato storages for use on farm. We took one of their designs, and adapted it for use in Turrialba. With a double sandwich of fiberglass panels, a wide roof overhang to shade the sides, and an air conditioner to drop the temperature to a reasonable level (it was often more than 30ºC outside) we could successfully store potatoes for several months.

Turrialba became a prime site for testing potato varieties for their resistance to bacterial wilt, and CIP scientists from Lima would pass through to see for themselves how we were getting on. Given his interest and expertise in bacterial wilt it wasn’t surprising that Ed French visited us on at least one occasion.

Ed French and Jorge Aguilar checking the yield of some potato varieties after exposure to bacterial wilt. This plot is surrounded by the remains of wilted plants.

We also worked with colleagues in the Ministry of Agriculture and Animal Husbandry (MAG) in San José to test different potato lines against various diseases such as viruses, and worked with farmers to find ways to increase productivity.

The productivity of many potato farms was quite low. Why? Overuse of fertilizers and agrochemicals, and not applying these in the most effective way to control pests and diseases, especially control of the late blight disease to which the two main varieties Atzimba and Rosita were highly susceptible. Many farmers worked on the basis that twice the dose of a fungicide, for example, would provide twice the control. Sadly that was never the case. Working with individual farmers was possible, but having the potato growers association on side was important. And their president was a young and forward-looking farmer, Olman Montero.

With Olman Montero on his farm on the slopes of the Irazu volcano.

Our work led to a few publications. Scientific publication was always welcome, but was never a driving force in our work. We were more concerned to make a difference in farmers’ fields by providing clean seed, improving productivity, identifying resistant potato varieties, or managing diseases in the field.

  • Bryan, J.E., M.T. Jackson & N. Melendez, 1981. Rapid Multiplication Techniques for Potatoes. International Potato Center, Lima, Peru. PDF
  • Jackson, M.T., L.F. Cartín & J.A. Aguilar, 1981. El uso y manejo de fertilizantes en el cultivo de la papa (Solanum tuberosum L.) en Costa Rica. Agronomía Costarricense 5, 15-19. PDF
  • Jackson, M.T. & L.C. González, 1981. Persistence of Pseudomonas solanacearum (Race 1) in a naturally infested soil in Costa Rica. Phytopathology 71, 690-693. PDF
  • Jackson, M.T., L.C. González & J.A. Aguilar, 1979. Avances en el combate de la marchitez bacteriana de papa en Costa Rica. Fitopatología 14, 46-53. PDF

The five years that I spent in Costa Rica were among the best of my career. I really had to become self-reliant, learning to stand on my own two feet and grow professionally as a scientist and a project manager. There was no alternative. Being so far from CIP headquarters in Lima, and with communications vastly slower than today, I just couldn’t call on someone if I found myself in a spot of bother. Phone calls had to be booked at least a day in advance, or we could use telex – who remembers that? Otherwise I just mailed quarterly progress reports to keep everyone up to date with what was going on in Central America, and whether I was keeping to the work plans developed in December each year when the Regional Research staff from around the world congregated in Lima for a two week planning meeting. Ken Brown was an excellent Regional Research director; he let me and my Regional Research colleagues get on with things with only minor adjustments as and when necessary (keeping his staff ‘on a light rein’), so different from today when scientists are assailed frequently and from many quarters to account for their work and performance.

I owe a great debt to Jorge, Moisés, and Leda for all their contributions to the success of the CIP project in Costa Rica. And all my friends and colleagues in Costa Rica’s Ministry of Agriculture and Animal Husbandry, as well as other programs contributing to PRECODEPA.

It was with some sadness that Steph, Hannah, and I upped sticks and moved back to Lima. You might ask why we would make such a move when things were going well in the Costa Rica program. By November 1980 I felt that I had achieved what I’d been sent there for, and even if I stayed on for another year or so, the scope of the work wouldn’t have changed significantly. In any case, the PRECODEPA project was ticking along quite nicely, managed by the national programs themselves, and everyone felt that a more distant relationship with CIP would allow the project to grow and mature. In any case, I was also looking for another potato challenge. And I expected that to come with another Regional Research posting. Little did I know, at the end of November that year, what life would have in store for me in 1981 [3].


Where are they now?
Since leaving Costa Rica at the end of November 1980, I have only been back to Costa Rica once, in 1997 when I was managing a worldwide project on rice biodiversity for the International Rice Research Institute (IRRI) funded by the Swiss government. I did meet both Jorge and Leda on that trip; I don’t recall if I saw Moisés during that visit to Turrialba. I stayed a couple of days in Turrialba. Maybe Jorge, Moisés and I spent an evening at the hilltop bar-restaurant at Turrialtico (now a fancy lodge) near CATIE where we would venture to enjoy a few beers (and some typical bar snacks or bocas) after a day in the field. And I had mostly lost contact with all three former colleagues—until quite recently. Such is the power of social media!

Jorge, Leda, and Moisés are all now retired, more or less, although involved in various volunteer activities. They would be in their early to mid-sixties now.

Jorge continues to live in Turrialba, and still manages a small finca on a part-time basis. He and his wife Carmen have three sons and two granddaughters. Sofía and Amanda are Leonardo’s daughters.

Jorge and Carmen

L-R: Fabian (40), Leonardo (44). Carmen, Jorge, and Daniel (30).

Sofia (7) and Amanda (2)

After leaving CATIE in early 1980, Leda returned to Alajuela, and spent many years working at the headquarters of IICA on the outskirts of San José. She has enjoyed traveling in her retirement, most recently in Myanmar in 2019.

She has one son, Enrique (29) who I met in 1997. I stayed with Leda for a couple of nights in Alajuela, and Enrique graciously gave me his room.

Enrique and Leda on 9 November 2020 in her garden in Alajuela.

Moisés now lives in the La Pitahaya neighborhood of Cartago, a city at the heart of the Costarrican potato industry, lying more or less halfway between San José and Turrialba.

Leda, Moisés, and José Alonso

With his second wife Leda, he has one son José Alonso, who celebrated his 11th birthday just a few days ago. Moisés also has two daughters Ana Amelia (26) and Karen (24) from his first marriage. He also has two granddaughters aged sixteen and fifteen.

It’s wonderful to have reconnected with old friends.


[1] In 1983, I contributed a short piece on potatoes in Costa Rican Natural History, a book edited by eminent tropical biologist, Daniel Janzen who spent many years studying biodiversity in Costa Rica.

[2] I have two enduring memories of that trip. Actually, of the flight from Lima to Panama, and the return. As I mentioned earlier, there were no direct flights from Lima to Costa Rica back in the day. We took an early morning flight (around 06:30 or so) on Air Panama from Lima to Panama City, with an onward connection there to San José. Hardly had the aircraft (a Boeing 727) lifted off the runway in Lima when it was ‘open bar’ for the remainder of the flight. I think Roger, Ed, and I all enjoyed rum cocktails before breakfast! Then on the return flight from Panama (I have this idea at the back of my mind that it was a Braniff DC8 flight), we hit an air pocket somewhere over the Colombian Andes, and it felt as though the plane dropped 1000 feet. Bang! That was my first experience of some serious turbulence, but not the last by a long chalk over the next 45 years.

[3] We returned to Lima, with the expectation of moving to Brasilia (for the southern cone countries of South America). When that fell through, the next option was to join the CIP program for Southeast Asia, based in Los Baños in the Philippines. In the event, that didn’t come about since I had applied for a faculty position in the Department of Plant Biology (formerly Botany) at the University of Birmingham, being offered the position in January 1981. We moved back to the UK in March that year. It would be another decade before landing up in the Philippines. But that’s another story.

The quiet man of GRC

GRC? It’s short for the TT Chang Genetic Resources Center at the International Rice Research Institute (IRRI) in the Philippines, which I had the privilege to lead between July 1991 and April 2001. I’m not sure if GRC is an organizational unit at IRRI anymore having just checked IRRI’s organizational structure dated April 2020.

However, GRC is/was the home of the International Rice Genebank at IRRI, the largest of its kind globally for rice. It safely conserves more than 130,000 samples (known as accessions) of cultivated and wild rice species from around the world and, as the most genetically-diverse collection of rice anywhere, it is the foundation for food security in many countries, especially in Asia. Rice breeders have dipped into this valuable resource for almost six decades since IRRI was founded in 1960 and the first germplasm samples brought to Los Baños by my predecessor, Dr TT Chang.

Renato ‘Ato’ Reaño

Anyway, this post is not about me or Dr Chang, but about someone who surely was the quiet man of GRC. Who is this low-key individual?

Why, Renato Reaño of course, known to one and all as ‘Ato’.

Not long after I joined IRRI, it became clear to me that Ato should become my right-hand man for managing all the genebank field operations, from multiplication and rejuvenation of seed samples, as well as establishing and looking after field plots for germplasm characterization (although the actual scoring of the materials was the responsibility for a few years of another colleague, Tom Clemeno, who passed away in 2015).

So, once I’d made an analysis of how the genebank was being managed when I took the helm in 1991, and decided on changes I deemed necessary (not universally accepted by all genebank in the first instance after several decades of working under Dr Chang), I asked Ato to take on the role of Field Operations Manager (although at that time he was officially still only a Research Assistant).

Ato retired from IRRI in March this years after more than 36 years of loyal—and very productive—service to the institute. Over the years, and as his confidence grew, taking on more responsibilities, Ato was promoted to new levels in the IRRI hierarchy, and retired as a Senior Associate Scientist.

Along the way he was elected to lead the IRRI employees association (an excellent indication of the esteem in which his colleagues held him), and he was also elected President of the Crop Science Society of the Philippines (CSSP) for 2006-2007.


Ato helped develop and implement many necessary changes to field operations. What is often not fully appreciated that for the long-term conservation of seeds in a genebank, what happens in the field during the growing season and how seeds are handled through the drying process are as important—if not more so in some respects—than the actual storage conditions. Dr Fiona Hay, a seed physiologist who was hired after I’d passed the GRC baton to my successor Dr Ruaraidh Sackville Hamilton in 2002, studied how the drying of seeds could be improved further, and Ato’s role in managing the rice germplasm in the field and the drying after harvest was pivotal. I’ve written about those aspects of rice germplasm management in an August 2015 post.

Ato made the field operations look straightforward. Nothing could be further from the truth. He had to handle thousands of seed samples each planting season, nurturing each one, ensuring there were no mix-ups.

He had a great rapport with his staff. Here he is with some of them in 2017 after they had finished the harvest of more than 4000 samples, and dried them successfully using the new approach that I referred to in the August 2015 post above.

Ato (second from right) with his field staff in 2017. Photo courtesy of Fiona Hay.

Each season (there being two in Los Baños, wet and dry) Ato took responsibility for growing thousands of seed samples, some for the first time after they had been acquired by the genebank, others for routine regeneration if seed viability had declined or seed stocks were running low, or for characterization of the different rices for a whole series of traits, such as days to flowering, plant height, color of grains, and the like.

But to have a better appreciation of Ato’s work in the field and how that contributed to the work of the genebank, just watch this segment, 2:04 – 4:29 minutes in the video below to see for yourselves.

Ato remained the quiet man of GRC during the years I was at the helm, but he constantly grew in confidence, taking his first overseas trip on behalf of the genebank to present a paper at ICRISAT in Hyderabad, India in 1995, and eventually being recognised by his peers and elected to the roles I mentioned earlier.

I also relied on Ato to help me interact with GRC staff. If I became aware of a staff ‘situation’ developing (perhaps an unease I could detect as I made my daily visits to every part of the genebank), it would have been difficult for me as Head of GRC, and as a non-Filipino who didn’t speak Tagalog, to easily get to the bottom of things. Then I would ask Ato to help find out what was going on, deal with it if he could, and only elevate issues to me that needed my intervention. This relationship worked well, and I was very grateful to Ato for the management support he provided in this respect.

Thanks for everything that you did, Ato. Your contributions to the long-term conservation of rice genetic resources will long be remembered and appreciated.

With Ato’s retirement, there’s just one of ‘my’ staff left. Genebank Manager Pola de Guzman will also retire later this year. It will finally be the end of the Chang-Jackson-Sackville Hamilton era.


 

Science publications that influenced my choice of career . . .

I’m sure, like me, many scientists have a few publications that they treasure. No, I’m not referring to any which they themselves authored; rather, publications that made them sit up and pay attention, so to speak. And, in doing so, particularly stimulated their interest and perhaps even guided their own scientific careers subsequently.

I’ve now been retired for ten years, but I still look back to how I got started in the world of plant genetic resources fifty years ago, and some of the scientific publications that pointed me in that direction. Let me backup a little and explain how this came about.

In 1967, I was accepted on to a BSc degree course at the University of Southampton (on England’s south coast) to study environmental botany and geography. I’ve written elsewhere about the three very happy years I spent in Southampton until graduation in July 1970.

The core of my degree course, particularly in my third or senior year, was a two semester ecology module taught in the Botany department, and different aspects of physical geography (such as geomorphology, biogeography, and climatology) in the Geography department. But I also took several shorter elective modules in Botany, including plant speciation, plant breeding, and population genetics. This latter course was taught by one of the pioneers in this field, Vice Chancellor Professor Sir Kenneth Mather who came to Southampton from the University of Birmingham (where he had been head of the Department of Genetics). He claimed (probably with some justification) that he was the only teaching Vice Chancellor at that time in the UK.

Joyce Lambert

We were a small group of only six or so ecology students, and this module was taught by quantitative ecologist Dr Joyce Lambert (who was also my personal tutor). All of us were required to submit an extended essay of 4-5000 words on an ‘ecological topic’ of our choice. It goes without saying that Joyce hinted she would prefer essays about her interest, namely the application of numerical methods to study vegetation landscapes.

I did not heed Joyce’s ‘advice’; I guess she was not best pleased. Instead, and with encouragement from genetics lecturer Dr Joe Smartt, I chose to explore the relationship between ecology, genetics, and taxonomy (the related fields of ecological genetics and experimental taxonomy) in an essay about the concept of ‘ecotypes’. Simply put, an ecotype is a distinct form or race of a plant occupying a particular habitat.

So that was my aim. What would be my entry point? And which literature would be most useful for my purpose?

From the 1920s onwards, several botanists (Göte Turesson in Sweden, JW Gregor in Scotland, and three staff at the Carnegie Institute of Washington in Stanford: geneticist Jens Clausen, physiologist William Hiesey, and taxonomist David Keck) had studied the variation of species (genetically, physiologically, and taxonomically) in relation to their environments, and the role of natural selection on plant adaptation. There was a wealth of literature to delve into. But where to begin?

Jack Heslop-Harrison

I was fortunate that, just a few years earlier, Professor Jack Heslop-Harrison (then Mason Professor of Botany at the University of Birmingham) published an important review paper about what became for me a fascinating branch of botanical science, the study of variation within species in relation to environment.

Forty years of genecology, published in Advances in Ecological Research in 1964 (Vol. 2: 159-247) was, for me, one of those formative publications. Not only was the review thoroughly comprehensive in its coverage, but had the added quality of being extremely well written. It has stood the test of time. Yet, it would be interesting to bring it up to date, introducing all the latest evidence based on molecular biology and genomics.

When I contacted Heslop-Harrison’s son ‘Pat’ (who is Professor of Plant Cell Biology and Molecular Cytogenetics at the University of Leicester) to request a copy of his father’s paper (I’d ‘lost’ the copy I once had) he told me that he began writing a review 100 years of genecology, but had never completed it.

He did make this interesting comment: When I started on a ‘100 years’ update, I was taken that some parts [of ‘Forty years of genecology’] sounded remarkably old-fashioned, while other parts could fit unchanged in a strong grant application made today. But how the combination of molecular/marker studies and modelling has really allowed genecology to take its rightful place in biology.

Immersing myself in the various concepts of ‘ecotype’, ‘clines’, and ‘infraspecific variation’ among many others, Heslop-Harrison’s review not only provided me with the impetus to fulfil a pressing course assignment, but subconsciously perhaps helped me make some decisions about a future career. I guess this was the first time I became really enthusiastic about any botanical sub-discipline. Later on, when I began working in the area of conservation and use of plant genetic resources, the study of variation patterns and adaptation in crop species and their wild relatives became an important focus of what I set out to achieve. In fact, understanding the nature of crop plant variation—and how to use it—is one of the fundamental concepts underpinning the value of plant genetic resources.

No study of variation in plant species would be complete, even today I believe, without reference to the pioneering work of Clausen, Keck, and Hiesey in California over several decades from the 1930s. Their work had been highlighted, of course, in Heslop-Harrison’s review. I went back to their original papers*.

L-R: Jens Clausen (cytology and genetics), William Hiesey (physiology), and David Keck (taxonomy/botany)

And what an eye-opener they were: a classic set of papers, published between 1934 and 1958, describing experimental studies on the nature of species that really caught my attention, and to which I still return from time to time.

While others, like Turesson and Gregor, had also studied plant variation experimentally, their work was not on the same scale that Clausen and his colleagues achieved across central California, from the coast to the high Sierra Nevada.

Working with a range of species, they collected samples from different populations of each across this Californian transect and, using a reciprocal transplant approach, grew samples at experimental gardens on the coast at Stanford and at different altitudes in the mountains, at Mather and Timberline. So, for example, samples collected from coastal sites were grown at the high altitude garden, and vice versa and all combinations in between. Even the same species looked different under different environments, in terms of plant stature or days to flowering, for example, being just two of the many traits they studied. They were interested if these traits would persist when grown in another environment. Here is an example from yarrow or Achillea.

Clausen, J, DD Keck and WM Hiesey, 1948. Experimental studies on the nature of species. III: Environmental responses of climatic races of Achillea. Publication 581. Washington, D.C.: Carnegie Institution of Washington.

They studied how well plants from one environment thrived in another, identifying the adaptations that enabled them to survive, and understanding both the genetic and physiological basis for adaptation, while recognising some of the variants taxonomically, if warranted. Many were simply locally-adapted populations, or ecotypes. Just a beautiful and competent piece of science.

Anyway, come the summer of 1970 and having just graduated, I still wasn’t sure what I’d be doing or where. I’d been accepted on to the MSc course on Conservation and Utilization of Plant Genetic Resources at the University of Birmingham to begin in September. But while I had a guaranteed place, there was no funding. And without a studentship there was no way I could support myself and pay tuition fees.

That all changed at the beginning of August or thereabouts. I had a phone call from Professor Jack Hawkes, who was Mason Professor of Botany (succeeding Heslop-Harrison) and the MSc course director, letting me know he’d found some funds to support my studies. It was wonderful news, and I immediately began to make plans to move to Birmingham in mid-September.

There was one important thing Jack asked me to do: purchase a copy of a book that had just been published, and try and work my way through it before I landed up in Birmingham.

This book, Genetic Resources in Plants – their Exploration and Conservation, was more than an eye opener as far as I was concerned. It was as if the scales fell from my eyes. What a revelation!

The book was dedicated to Nikolai Ivanovich Vavilov. Until then I’d never heard of this eminent Russian geneticist, the ‘Father of Plant Genetic Resources’, who subsequently became something of a scientific hero of mine.

Edited by wheat breeder Sir Otto Frankel and FAO scientist Dr Erna Bennett, both pioneers of the 1960s genetic resources movement, this book was essential reading for anyone entering the new field of conservation and use of plant genetic resources.

Sir Otto Frankel and Erna Bennett

It emerged from a technical conference held at FAO headquarters in Rome on 18-26 September 1967, and comprised 44 chapters penned by many if not most of the leading lights then in genetic conservation and crop and forestry specialists from around the world. As Sir Otto wrote in the preface, the book attempts to define and develop the principles underlying the various stages of exploration, conservation and utilization. Its usefulness will depend on the degree to which it succeeds in illuminating practical problems, rather than offering prescriptions or instructions.

In the course of my own entry into the world of plant genetic resources, I came to meet and become friends with several of the contributors.

The six sections covered topics in: (1) Biological background (the nature of crop diversity, centers of origin, taxonomy); (2) Tactics of exploration and collection; (3) Examples of exploration (crops and forestry); (4) Evaluation and utilization; (5) Documentation, records and retrieval; and (6) Conservation.

It became something of a ‘bible’ for me, and even today, I dip into its many chapters to refresh some of my ideas. Yes, the world of conservation and use of plant genetic resources has moved on significantly since its publication 50 years ago. Just think of the remarkable advances in molecular biology and genomics that nowadays open up a whole new dimension to our understanding of variation among important crop species and their wild relatives. And the impressive progress in computing for both data analysis as well as data management for crop germplasm collections. Fifty years ago, many things that we consider routine today were then but a pipe dream, if they were even on someone’s intellectual horizon.

I really do believe that anyone contemplating a career in plant genetic conservation as I was, 50 years ago, would benefit from delving into Frankel and Bennett, not only to appreciate how the genetic resources movement started in the 1960s, but also just how we have come in the five decades since.


*These are the papers from the California group of Clausen, Keck and Hiesey:

  • Clausen J, DD Keck & WM Hiesey, 1934. Experimental taxonomy. Yearb. Carneg. Inst. 33, 173-177.
  • Clausen J, DD Keck & WM Hiesey, 1939. The concept of species based on experiment. Amer. J. Bot. 26, 103-106.
  • Clausen J, DD Keck & WM Hiesey, 1940. Experimental studies on the nature of species. I. Effect of varied environments on western North American plants. Publ. Carneg. Instn. No. 520.
  • Clausen J, DD Keck & WM Hiesey, 1945. Experimental studies on the nature of species. II. Plant evolution through amphiploidy and autoploidy, with examples from the Madiinae. Publ. Carneg. Instn. No. 564.
  • Clausen J, DD Keck, & WM Hiesey, 1948. Experimental studies on the nature of species. III. Environmental responses of climatic races of Achillea. Publ. Carneg. Instn. No. 581.
  • Clausen J & WM Hiesey, 1958. Experimental studies on the nature of species. IV. Genetic structure of ecological races. Publ. Carneg. Instn. No. 615.

 

Potatoes or rice?

I graduated in July 1970 from the University of Southampton (a university on England’s south coast) with a BSc Hons degree in botany and geography. ‘Environmental botany’ actually, whatever that meant. The powers that be changed the degree title half way through my final (i.e. senior) year.

Anyway, there I was with my degree, and not sure what the future held in store. It was however the beginning of a fruitful 40 year career in international agricultural research and academia at three institutions over three continents, in a number of roles: research scientist, principal investigator (PI), program leader, teacher, and senior research manager, working primarily on potatoes (Solanum tuberosum) and rice (Oryza sativa), with diversions into some legume species such as the grasspea, an edible form of Lathyrus.

Potatoes on the lower slopes of the Irazu volcano in Costa Rica, and rice in Bhutan

I spent the 1970s in South and Central America with the International Potato Center (CIP), the 1980s at the University of Birmingham as a Lecturer in the School of Biological Sciences (Plant Biology), and almost 19 years from July 1991 (until my retirement on 30 April 2010) at the International Rice Research Institute (IRRI) in the Philippines¹.

I divided my research time during those 40 years more or less equally between potatoes and rice (not counting the legume ‘diversions’), and over a range of disciplines: biosystematics and pre-breeding, genetic conservation, crop agronomy and production, plant pathology, plant breeding, and biotechnology. I was a bit of a ‘jack-of-all-trades’, getting involved when and where needs must.

However, I haven’t been a ‘hands-on’ researcher since the late 1970s. At both Birmingham and IRRI, I had active research teams, with some working towards their MSc or PhD, others as full time researchers. You can see our research output over many years in this list of publications.

Richard Sawyer

Very early on in my career I became involved in research management at one level or another. Having completed my PhD at Birmingham in December 1975 (and just turned 27), CIP’s Director General Richard Sawyer asked me to set up a research program in Costa Rica. I moved there in April 1976 and stayed there until November 1980.


In these Covid-19 lockdown days, I’m having ample time to reflect on times past. And today, 30 April, it’s exactly 10 years since I retired.

Just recently there was a Twitter exchange between some of my friends about the focus of their research, and the species they had most enjoyed working on.

And that got me thinking. If I had to choose between potatoes and rice, which one would it be? A hard decision. Even harder, perhaps, is the role I most enjoyed (or gave me the most satisfaction) or, from another perspective, in which I felt I’d accomplished most. I’m not even going to hazard a comparison between living and working in Peru (and Costa Rica) versus the Philippines. However, Peru has the majesty of its mountain landscapes and its incredible cultural history and archaeological record (notwithstanding I’d had an ambition from a small boy to visit Peru one day). Costa Rica has its incredible natural world, a real biodiversity hotspot, especially for the brilliant bird life. And the Philippines I’ll always remember for all wonderful, smiling faces of hard-working Filipinos.

And the scuba diving, of course.

Anyway, back to potatoes and rice. Both are vitally important for world food security. The potato is, by far, the world’s most important ‘root’ crop (it’s actually a tuber, a modified underground stem), by tonnage at least, and grown worldwide. Rice is the world’s most important crop. Period! Most rice is grown and consumed in Asia. It feeds more people on a daily basis, half the world’s population, than any other staple. Nothing comes close, except wheat or maize perhaps, but much of those grains is processed into other products (bread and pasta) or fed to animals. Rice is consumed directly as the grain.


Just 24 when I joined CIP as a taxonomist in January 1973, one of my main responsibilities was to collect potato varieties in various parts of the Peruvian Andes to add to the growing germplasm collection of native varieties and wild species. I made three trips during my three years in Peru: in May 1973 to the departments of Ancash and La Libertad (with my colleague, Zósimo Huamán); in May 1974 to Cajamarca (accompanied by my driver Octavio); and in January/February 1974 to Cuyo-Cuyo in Puno and near Cuzco, with University of St Andrews lecturer, Dr Peter Gibbs.

Top: with Octavio in Cajamarca, checking potato varieties with a farmer. Bottom: ready for the field, near Cuzco.

My own biosystematics/pre-breeding PhD research on potatoes looked at the breeding relationships between cultivated forms with different chromosome numbers (multiples of 12) that don’t naturally intercross freely, as well as diversity within one form with 36 chromosomes, Solanum x chaucha. In the image below, some of that diversity is shown, as well as examples of how we made crosses (pollinations) between different varieties, using the so-called ‘cut stem method’ in bottles.

Several PhD students of mine at Birmingham studied resistance to pests and diseases in the myriad of more than 100 wild species of potato that are found from the southern USA to southern Chile. We even looked at the possibility of protoplast fusion (essentially fusion of ‘naked’ cells) between different species, but not successfully.

I developed a range of biosystematics projects when taking over leadership of the International Rice Genebank at IRRI, publishing extensively about the relationships among the handful (about 20 or so) wild rice species and cultivated rice. One of the genebank staff, Elizabeth Ma. ‘Yvette’ Naredo (pointing in the image below) completed her MS degree under my supervision.

Although this research had a ‘taxonomic’ focus in one sense (figuring out the limits of species to one another), it also had the practical focus of demonstrating how easily species might be used in plant breeding, according to their breeding relationships, based on the genepool concept of Harlan and de Wet, 1971 [1], illustrated diagrammatically below.


When I transferred to Costa Rica in 1976, I was asked to look into the possibility of growing potatoes under hot, humid conditions. At that time CIP was looking to expand potato production into areas and regions not normally associated with potato cultivation. One of the things I did learn was how to grow a crop of potatoes.

I was based in Turrialba (at the regional institute CATIE), at around 650 masl, with an average temperature of around 23°C (as high as 30°C and never much lower than about 15°C; annual rainfall averages more than 2800 mm). Although we did identify several varieties that could thrive under these conditions, particularly during the cooler months of the year, we actually faced a more insidious problem, and one that kept me busy throughout my time in Costa Rica.

Shortly after we planted the first field trials on CATIE’s experiment station, we noticed that some plants were showing signs of wilting but we didn’t know the cause.

With my research assistant Jorge Aguilar checking on wilted plants in one of the field trials.

Luis Carlos González

Fortunately, I established a very good relationship with Dr Luis Carlos González Umaña, a plant pathologist in the University of Costa Rica, who quickly identified the culprit: a bacterium then known as Pseudomonas solanacearum (now Ralstonia solanacearum) that causes the disease known as bacterial wilt.

I spent over three years looking into several ways of controlling bacterial wilt that affects potato production in many parts of the world. An account of that work was one of the first posts I published in this blog way back in 2012.

The other aspect of potato production which gave me great satisfaction is the work that my colleague and dear friend Jim Bryan and I did on rapid multiplication systems for seed potatoes.

Being a vegetatively-propagated crop, potatoes are affected by many diseases. Beginning with healthy stock is essential. The multiplication rate with potatoes is low compared to crops that reproduce through seeds, like rice and wheat. In order to bulk up varieties quickly, we developed a set of multiplication techniques that have revolutionised potato seed production systems ever since around the world.

AS CIP’s Regional Representative for Mexico, Central America, and the Caribbean (known as CIP’s Region II), I also contributed to various potato production training courses held each year in Mexico. But one of our signature achievements was the launch of a six nation research network or consortium in 1978, known as PRECODEPA (Programa REgional COoperativo DE PApa), one of the first among the CGIAR centers. It was funded by the Swiss Government.

Shortly after I left Costa Rica in November 1980, heading back to Lima (and unsure where my next posting would be) PRECODEPA was well-established, and leadership was assumed by the head of one of the national potato program members of the network. PRECODEPA expanded to include more countries in the region (in Spanish, French, and English), and was supported continually by the Swiss for more than 25 years. I have written here about how PRECODEPA was founded and what it achieved in the early years.

I resigned from CIP in March 1981 and returned to the UK, spending a decade teaching at the University of Birmingham.


Did I enjoy my time at Birmingham? I have mixed feelings.

I had quite a heavy teaching load, and took on several administrative roles, becoming Chair of the Biological Sciences Second Year Common Course (to which I contributed a module of about six lectures on agricultural ecosystems). I had no first teaching commitments whatsoever, thank goodness. I taught a second year module with my colleague Richard Lester on flowering plant taxonomy, contributing lectures about understanding species relationships through experimentation.

Brian Ford-Lloyd

With my close friend and colleague Dr Brian Ford-Lloyd (later Professor), I taught a final year module on plant genetic resources, the most enjoyable component of my undergraduate teaching.

One aspect of my undergraduate responsibilities that I really did enjoy (and took seriously, I believe—and recently confirmed by a former tutee!) was the role of personal tutor to 1st, 2nd and 3rd year students. I would meet with them about once a week to discuss their work, give advice, set assignments, and generally be a sounding board for any issues they wanted to raise with me. My door was always open.

Most of my teaching—on crop diversity and evolution, germplasm collecting, agricultural systems, among others—was a contribution to the one year (and international) MSc Course on Conservation and Utilization of Plant Genetic Resources on which I had studied a decade earlier. In my travels around the world after I joined IRRI in 1991, I would often bump into my former students, and several also contributed to a major rice biodiversity project that I managed for five years from 1995. I’m still in contact with some of those students, some of whom have found me through this blog. And I’m still in contact with two of my classmates from 1970-71.

Research on potatoes during the 1980s at Birmingham was not straightforward. On the one hand I would have liked to continue the work on wild species that had been the focus of Professor Jack Hawkes’ research over many decades.

With Jack Hawkes, collecting Solanum multidissectum in the central Andes north of Lima in early 1981 just before I left CIP to return to the UK. This was the only time I collected with Hawkes. What knowledge he had!

He had built up an important collection of wild species that he collected throughout the Americas. I was unable to attract much funding to support any research projects. It wasn’t a research council priority. Furthermore, there were restrictions on how we could grow these species, because of strict quarantine regulations. In the end I decided that the Hawkes Collection would be better housed in Scotland at the Commonwealth Potato Collection (or CPC, that had been set up after the Empire Potato Collecting Expedition in 1938-39 in which Jack participated). In 1987, the Hawkes Collection was acquired by the CPC and remains there to this day.

Dave Downing was the department technician who looked after the potato collection at Birmingham. He did a great job coaxing many different species to flower.

Having said that, one MSc student, Susan Juned, investigated morphological and enzyme diversity in the wild species Solanum chacoense. After graduating Susan joined another project on potato somaclones that was managed by myself and Brian Ford-Lloyd (see below). Another student, Ian Gubb, continued our work on the lack of enzymic blackening in Solanum hjertingii, a species from Mexico, in collaboration with the Food Research Institute in Norwich, where he grew his research materials under special quarantine licence. A couple of Peruvian students completed their degrees while working at CIP, so I had the opportunity of visiting CIP a couple of times while each was doing field work, and renew my contacts with former colleagues. In 1988, I was asked by CIP to join a panel for a three week review of a major seed production project at several locations around Peru.

With funding of the UK’s Overseas Development Administration (ODA, or whatever it was then), and now the Department for International Development (DFID), and in collaboration with the Plant Breeding Institute (PBI) in Cambridge and CIP, in 1983/84 we began an ambitious (and ultimately unsuccessful) project on true potato seed (TPS) using single seed descent (SSD) in diploid potatoes (having 24 chromosomes). Because of the potato quarantine situation at Birmingham, we established this TPS project at PBI, and over the first three years made sufficient progress for ODA to renew our grant for a second three year period.

We hit two snags, one biological, the other administrative/financial that led to us closing the project after five years. On reflection I also regret hiring the researcher we did. I’ve not had the same recruitment problem since.

Working with diploid potatoes was always going to be a challenge. They are self incompatible, meaning that the pollen from a flower ‘cannot’ fertilize the same flower. Nowadays mutant forms have been developed that overcome this incompatibility and it would be possible to undertake SSD as we envisaged. Eventually we hit a biological brick wall, and we decided the effort to pursue our goal would take more resources than we could muster. In addition, the PBI was privatized in 1987 and we had to relocate the project to Birmingham (another reason for handing over the Hawkes Collection to the CPC). We lost valuable research impetus in that move, building new facilities and the like. I think it was the right decision to pull the plug when we did, admit our lack of success, and move on.

We wrote about the philosophy and aims of this TPS project in 1984 [2], but I don’t have a copy of that publication. Later, in 1987, I wrote this review of TPS breeding [3].

Susan Juned

As I mentioned above, Brian Ford-Lloyd and I received a commercial grant to look into producing tissue-culture induced variants, or somaclones, of the crisping potato variety Record with reduced low temperature sweetening that leads to ‘blackened’ crisps (or chips in the USA) on frying. We hired Susan Juned as the researcher, and she eventually received her PhD in 1994 for this work. Since we kept the identity of each separate Record tuber from the outset of the project, over 150 tubers, and all the somaclone lines derived from each, we also showed that there were consequences for potato seed production and maintenance of healthy stocks as tissue cultures. We published that work in 1991. We also produced a few promising lines of Record for our commercial sponsor.

One funny aspect to this project is that we made it on to Page 3 of the tabloid newspaper The Sun, notorious in those days for a daily image of a well-endowed and naked young lady. Some journalist or other picked up a short research note in a university bulletin, and published an extremely short paragraph at the bottom of Page 3 (Crunch time for boffins) as if our project did not have a serious objective. In fact, I was even invited to go on the BBC breakfast show before I explained that the project had a serious objective. We weren’t just investigating ‘black bits in crisp packets’.

Brian and I (with a colleague, Martin Parry, in the Department of Geography) organized a workshop on climate change in 1989, when there was still a great deal of skepticism. We published a book in 1990 from that meeting (and followed up in 2013 with another).

Despite some successes while at Birmingham, and about to be promoted to Senior Lecturer, I had started to become disillusioned with academic life by the end of the 1980s, and began to look for new opportunities. That’s when I heard about a new position at IRRI in the Philippines: Head of the newly-established Genetic Resources Center, with responsibility for the world renowned and largest international rice genebank. I applied. The rest is history,


Klaus Lampe

I was appointed by Director General Klaus Lampe even though I’d never actually run a genebank before. Taking on a genebank as prestigious as the International Rice Genebank was rather daunting. But help was on the way.

I knew I had a good team of staff. All they needed was better direction to run a genebank efficiently, and bring the genebank’s operations up to a higher standard.

Staff of the International Rice Genebank on a visit to PhilRice in 1996.

There was hardly an aspect of the operations that we didn’t overhaul. Not that I had the genebank team on my side from the outset. It took a few months for them to appreciate that my vision for the genebank was viable. Once on board, they took ownership of and responsibility for the individual operations while I kept an overview of the genebank’s operation as a whole.

With Pola de Guzman inside the Active Collection store room at +4C. Pola was my right hand in the genebank, and I asked her to take on the role of genebank manager, a position she holds to this day.

I’ve written extensively in this blog about the genebank and genetic resources of rice, and in this post I gave an overview of what we achieved.

You can find more detailed stories of the issues we faced with data management and germplasm characterization, or seed conservation and regeneration (in collaboration with my good friend Professor Richard Ellis of the University of Reading). We also set about making sure that germplasm from around Asia (and Africa and the Americas) was safe in genebanks and duplicated in the International Rice Genebank. We embarked on an ambitious five year project (funded by the Swiss government) to collect rice varieties mainly (and some wild samples as well), thereby increasing the size of the genebank collection by more than 25% to around 100,000 samples or accessions. The work in Laos was particularly productive.

My colleague, Dr Seepana Appa Rao (left) and Lao colleagues interviewing a farmer in Khammouane Province about the rice varieties she was growing.

We did a lot of training in data management and germplasm collecting, and successfully studied how farmers manage rice varieties (for in situ or on farm conservation) in the Philippines, Vietnam, and India.

One of IRRI’s main donors is the UK government through DFID. In the early 1990s, not long after I joined IRRI, DFID launched a new initiative known as ‘Holdback’ through which some of the funding that would, under normal circumstances, have gone directly to IRRI and its sister CGIAR centers was held back to encourage collaboration between dneters and scientists in the UK.

Whenever I returned on annual home leave, I would spend some time in the lab at Birmingham. John Newbury is on the far left, Parminder Virk is third from left, and Brian Ford-Lloyd on the right (next to me). One of my GRC staff, the late Amy Juliano spent a couple of months at Birmingham learning new molecular techniques. She is on the front row, fourth from right.

With my former colleagues at the University of Birmingham (Brian Ford-Lloyd, Dr John  Newbury, and Dr Parminder Virk) and a group at the John Innes Centre in Norwich (the late Professor Mike Gale and Dr Glenn Bryan) we set about investigating how molecular markers (somewhat in their infancy back in the day) could be used describe diversity in the rice collection or identify duplicate accessions.

Not only was this successful, but we published some of the first research in plants showing the predictive value of molecular markers for quantitative traits. Dismissed at the time by some in the scientific community, the study of  associations between molecular markers and traits is now mainstream.

In January 1993, I was elected Chair while attending my first meeting of the Inter-Center Working Group on Genetic Resources (ICWG-GR) in Ethiopia (my first foray into Africa), a forum bringing expertise in genetic conservation together among the CGIAR centers.

ICWG-GR meeting held at ILCA in Addis Ababa, Ethiopia in January 1993.

Over the next three years while I was Chair, the ICWG-GR managed a review of genetic resources in the CGIAR, and a review of center genebanks. We also set up the System-Wide Genetic Resources Program, that has now become the Genebank Platform.


I never expected to remain at IRRI as long as I did, almost nineteen years. I thought maybe ten years at most, and towards the end of the 1990s I began to look around for other opportunities.

Then, in early 2001, my career took another course, and I left genetic resources behind, so to speak, and moved into senior management at IRRI as Director for Program Planning and Coordination (later Communications, DPPC). And I stayed in that role until retiring from the institute ten years ago.

Top: after our Christmas lunch together at Antonio’s restaurant in Tagaytay, one of the best in the Philippines. To my left are: Sol, Eric, Corints, Vel, and Zeny. Below: this was my last day at IRRI, with Eric, Zeny, Corints, Vel, and Yeyet (who replaced Sol in 2008).

Ron Cantrell

The Director General, Ron Cantrell, asked me to beef up IRRI’s resource mobilization and project management. IRRI’s reputation with its donors had slipped. It wasn’t reporting adequately, or on time, on the various projects funded at the institute. Furthermore, management was not sure just what projects were being funded, by which donor, for what period, and what commitments had been set at the beginning of each. What an indictment!

I wrote about how DPPC came into being in this blog post. One of the first tasks was to align information about projects across the institute, particularly with the Finance Office. It wasn’t rocket science. We just gave every project (from concept paper to completion) a unique ID that had to be used by everyone. We also developed a corporate brand for our project reporting so that any donor could immediately recognise a report from IRRI.

So we set about developing a comprehensive project management system, restoring IRRI’s reputation in less than a year, and helping to increase the annual budget to around US$60 million. We also took on a role in risk management, performance appraisal, and the development of IRRI’s Medium Term Plans and its Strategy.

Bob Zeigler

Then under Ron’s successor, Bob Zeigler, DPPC went from strength to strength. Looking back on it, I think those nine years in DPPC were the most productive and satisfying of my whole career. In that senior management role I’d finally found my niche. There’s no doubt that the success of DPPC was due to the great team I brought together, particularly Corinta who I plucked out of the research program where she was working as a soil chemist.

Around 2005, after Bob became the DG, I also took on line management responsibility for a number of support units: Communication and Publications Services (CPS), Library and Documentation Services (LDS), Information Technology Service (ITS), and the Development Office (DO). Corinta took over day-to-day management of IRRI’s project portfolio.

With my unit heads, L-R: Gene Hettel (CPS), Mila Ramos (LDS), Marco van den Berg (ITS), Duncan Macintosh (DO), and Corinta Guerta (DPPC).


So, ten years on, what memories I have to keep my mind ticking over during these quiet days. When I began this post (which has turned out much longer than I ever anticipated) my aim was to decide between potatoes and rice. Having worked my way through forty years of wonderful experiences, I find I cannot choose one over the other. There’s no doubt however that I made a greater contribution to research and development during my rice days.

Nevertheless, I can’t help thinking about my South American potato days with great affection, and knowing that, given the chance, I’d be back up in the Andes at a moment’s notice. Potatoes are part of me, in a way that rice never became.

Farmer varieties of potatoes commonly found throughout the Andes of Peru.


Everyone needs good mentors. I hope I was a good mentor to the folks who worked with me. I was fortunate to have had great mentors. I’ve already mentioned a number of the people who had an influence on my career.

I can’t finish this overview of my forty years in international agriculture and academia without mentioning five others: Joe Smartt (University of Southampton); Trevor Williams (University of Birmingham); Roger Rowe (CIP); John Niederhauser (1990 World Food Prize Laureate); and Ken Brown (CIP)

L-R: Joe Smartt, Trevor Williams, Roger Rowe, and John Niederhauser.

  • Joe, a lecturer in genetics, encouraged me to apply for the MSc Course at Birmingham in early 1970. I guess without his encouragement (and Jack Hawkes accepting me on to the course) I never would have embarked on a career in genetic conservation and international agriculture. I kept in regular touch with Joe until he passed away in 2013.
  • At Birmingham, Trevor supervised my MSc dissertation on lentils. He was an inspirational teacher who went on to become the Director General of the International Board for Plant Genetic Resources (IBPGR) in Rome. The last time I spoke with Trevor was in 2012 when he phoned me one evening to congratulate me on being awarded an OBE. He passed away in 2015.
  • Roger joined CIP in July 1973 as Head of the Breeding and Genetics Department, from the USDA Potato Collection in Wisconsin. He was my first boss in the CGIAR, and I learnt a lot from him about research and project management. We are still in touch.
  • John was an eminent plant pathologist whose work on late blight of potatoes in Mexico led to important discoveries about the pathogen and the nature of resistance in wild potato species. John and I worked closely from 1978 to set up PRECODEPA. He had one of the sharpest (and wittiest) minds I’ve come across. John passed away in 2005.
  • Ken Brown

    Ken was a fantastic person to work with—he knew just how to manage people, was very supportive, and the last thing he ever tried to do was micromanage other people’s work. I learnt a great deal about program and people management from him.


[1] Harlan, JR and JMJ de Wet, 1971. Toward a rational classification of cultivated plants. Taxon 20, 509-517.

[2] Jackson, MT. L Taylor and AJ Thomson 1985. Inbreeding and true potato seed production. In: Report of a Planning Conference on Innovative Methods for Propagating Potatoes, held at Lima, Peru, December 10-14,1984, pp. 169-79.

[3] Jackson, MT, 1987. Breeding strategies for true potato seed. In: GJ Jellis & DE Richardson (eds), The Production of New Potato Varieties: Technological Advances. Cambridge University Press, pp. 248-261.


 

‘Selfie’ has just taken on a new meaning . . .

Self isolation—the new ‘selfie’! Social distancing. New words to add to our vocabularies. How our lives have changed in just two weeks.

These are indeed extraordinary times, unlike most of us have experienced in our lifetimes. And all due to the emergence in central China and subsequent pandemic spread of a previously unknown zoonotic coronavirus, now named SARS-CoV-2, that is causing an acute (and deadly for vulnerable individuals) respiratory infection, Covid-19. And while I am a biologist, this blog post is NOT about the virus and its biology. Rather, I’m focusing on some of the issues around and consequences of this pandemic.

I was born in 1948, three years after the end of World War II. I never personally experienced the horrors of that man-made conflict nor indeed any conflict. I find it offensive that politicians, some journalists, and others on social media make comparisons to a conflict that most were born after. I’m not the only one to feel this way. I just came across this opinion piece in yesterday’s The Guardian by Simon Tisdall.

I remember (just) the exigencies of rationing that continued for many years after the end of the war. Also, the difficulties endured during the petrol rationing of the 1956 Suez Crisis. Since then we have not experienced any serious rationing in the UK that I can recall.

However, the Covid-19 pandemic is on a different scale. It’s not that the total number of patients infected with the virus has yet come anywhere near the 1918 flu pandemic, for example. But this virus is new, it’s very infectious, and lethality apparently high. The worry is that without appropriate control, the pandemic will outrun the capacity of health services to provide care for those who suffer from an acute infection. Whole countries are closing down. And while some ‘draconian’ measures (including curfews) have been introduced in some countries, these have yet to be imposed in the UK. ‘Yet’ being the appropriate word.

Having seen the shortages of some products in the supermarkets such as rice and pasta, hand sanitizers, cleaning products, and, inexplicably, toilet paper, I do wonder when rationing across the board will become the norm. How this pandemic pans out, everyone will have to become accustomed to a changed world. I’ll return to that theme later on.


Cometh the hour, cometh the man . . .

Or woman for that matter.

[Disclaimer: My politics are center left. If I’d had the chance (I didn’t as I was working overseas), I would have voted for Tony Blair’s New Labour. So any criticism of politicians below is not aimed at them because of their right wing political stance (which is anathema to me), but simply because I do not believe they are the right people in this time of crisis.]

As President Franklin D Roosevelt famously said in his first inaugural address on 4 March 1933, ‘. . . the only thing we have to fear is . . . fear itself‘. It’s apt to remember this under the present circumstances. We fear the unknown. In times of crisis, everyone needs reassurance. And, as Simon Tisdall commented in his opinion piece that I referred to above, the war and wartime analogies only stoke fear.

Step up to the plate our political leaders. Or not, as the case may be.

It’s really unfortunate that in these trying times that the governments of both the UK and USA are led by insincere populists, men who are more concerned about their own image.

Sound-bite Boris Johnson (Take Back Control, Get Brexit Done) is resorting to the same sort of rhetoric in his daily Covid-19 briefings (with the Chief Medical Officer and the Chief Scientist often standing either side) as he did during the Brexit campaign. Making claims he cannot substantiate, such as we’d defeat the disease in the next 12 weeks. Evidence? That doesn’t seem to matter to this charlatan, whose attention span and lack of interest are legendary. It doesn’t help that at critical points in any press conference and the like his body language betrays his insecurity. Such as rubbing his hand through his shaggy hair. Not the most reassuring action.

As a question from ITV correspondent Robert Peston unfolded just the other day at a No. 10 briefing, Johnson’s habitual smirk evaporated to be replaced by various degrees of alarm, bewilderment, fear even, and not the look of a Prime Minister at the top of his game. This is not what he expected after his December electoral victory giving him an insurmountable 80 seat majority, and the opportunity, he must have believed, to do just whatever his fancy lighted on.

Here is a damning opinion piece from The Guardian by Marina Hyde on 20 March, who writes ‘We are being asked to put our trust – our lives – in the hands of a man whose entire career, journalistic and political, has been built on a series of lies.’

It seems to me that the UK government has not developed a coherent Covid-19 communications strategy. Have a read of this 21 March piece from BuzzFeed about the behind-the-scenes debates, arguments even, between politicians and experts. At the beginning of the outbreak in the UK, Johnson used his press briefing to suggest, albeit perhaps by accident rather than design, that the old and vulnerable were ‘collateral damage’ during the epidemic. “It is going to spread further“, he said, “and I must level with you, I must level with the British public, many more families are going to lose loved ones before their time.” Yes, that’s indeed a strong possibility. But emanating from the mouth of a politician who is widely mistrusted, and who comes across as callous and self-centered, whatever issue he addresses, it was a communications disaster.

What a message to send out to an already fearful population. Read about that press conference here.

And this appeared in the Sunday Times today.

Dominic Cummings

If true, this is an appalling perspective from the Prime Minister’s Chief Adviser Dominic Cummings (whose credibility among a large swathe of the population has already taken a dive).

And, I’m afraid, Johnson’s often blustering delivery, and lack of clarity on issues that should be unambiguous (his classical references, his use of language that most never use or at the very least understand) have probably exacerbated a situation that was rapidly spiralling out of control.

Communications strategies should deliver straightforward messages in plain language. No ifs or buts. Johnson has catastrophically failed in this respect.

Take the issue of social distancing and whether pubs, clubs and other venues should remain open (until last Friday night when the government finally enforced closure). Clearly millennials (and men in particular) had heard the message that they would be less impacted by Covid-19. They ignored the social distancing advice. And it hasn’t helped that Tim Martin, CEO of pub chain Wetherspoons (arch-Brexiteer and now self-proclaimed ‘epidemiologist’ apparently) could see no reason for pubs to close and went public with his criticism of the decision.

But if I think that the situation is grave here in the UK, just take a look at what is happening on the other side of the Atlantic, a country without a public healthcare system that takes care of the sick, elderly and vulnerable, come what may. Given the behavior and responses of POTUS #45, Donald J Trump, it’s surely time to seriously consider invoking Section 4 of the Twenty-Fifth Amendment. Why he is still in power is the question asked in this article on the Slate website.

Here is a leader (a term I use very lightly indeed) who has ‘hunches’ or ‘feels good’ about the situation, ignoring facts, scientific advice and stating things that are palpably false, claiming originally that coronavirus was a hoax dreamed up by the Democrats, and then later stating, once the situation had deteriorated, that he knew all along that it was a pandemic. No change in behavior there. Every press briefing becomes a campaign opportunity. And when challenged, even by the simplest and most straightforward of questions, Trump’s reaction is unbelievable. Just watch him throw a tantrum and verbally attack a journalist a couple of days ago when asked how he would reassure the American people, following a comment from Trump recommending the use of chloroquine against the virus. Extraordinary!

And so, here is another piece from Rolling Stone (from 20 March) that Trump’s live briefings are a danger to public health.

And now, Trump is being hailed as a ‘wartime President’, hoping that it will boost his electability in November’s election — assuming that goes ahead as expected. For heaven’s sake! Just read this article from today’s The Guardian.

But if you want to see how any leader should behave, just take a look at this address to the people of Scotland by First Minister, Nicola Sturgeon, on 20 March. What a contrast from Johnson and Trump. I’m no particular fan of Nicola Sturgeon, but she got this just right.


It’s interesting—but also concerning—to think what a changed world will look like. Already, a group of 34 ‘big thinkers’ have waxed lyrical on this very topic just a couple of days ago in the Politico Magazine online.

Just click this link to read their predictions.


At the beginning of this post I suggested that ‘selfie’ had taken on a new meaning: self isolation. Here’s me, taking a selfie while taking a selfie.

Steph and I are self isolating since we are in that elderly, over 70 demographic. But if the weather is fine (like earlier today) we have gone out for a walk. We need the fresh air. So we went along the Worcester and Birmingham Canal a few miles from home, and encountered only one or two other walkers while maintaining the necessary social distance.


I came across this the other day. Maybe our antipodean friends will soon be evolving some pandemic language variants.


Stay safe everyone. WASH YOUR HANDS – repeatedly, and thoroughly. Here’s the best demo I’ve yet seen on how to wash your hands properly, using black ink in place of soap to illustrate just how it should be done. Never mind that the commentary is in Spanish. That’s not needed.


 

Remembering an old friend: Bent Skovmand (1945-2007)

In preparation for a house move this year (that is increasingly likely to be delayed indefinitely until the Covid-19 crisis has passed), I’ve been working through dozens of envelopes of old photos, getting rid of those out of focus or we can’t determine when or where they were taken. I have come across quite a number from the years I spent working abroad, but before I went digital in the mid-noughties.

During the decade (1991-2001) that I had responsibility for the International Rice Genebank at the International Rice Research Institute (IRRI) in the Philippines, as Head of the institute’s Genetic Resources Center, I met and collaborated with some remarkable colleagues among the genetic resources community of the international agricultural research centers supported through the Consultative Group on International Agricultural Research (CGIAR).

These specialists met annually as the Inter-Center Working Group on Genetic Resources (ICWG-GR). But unlike other CGIAR inter-center working groups, all of the CGIAR centers were represented on the ICWG-GR, covering crops and their wild relatives, animals, forestry and agroforestry, aquatic resources, irrigation management, and food policy.

I attended my first meeting in January 1973, held at ILCA, the International Livestock Centre for Africa in Addis Ababa, Ethiopia (that merged with the International Laboratory for Research on Animal Diseases, ILRAD, in Nairobi in January 1995 to form the International Livestock Research Institute, ILRI).

The ICWG-GR at its meeting in Addis Ababa in January 1993. L-R: Brigitte L. Maass (CIAT), Geoff Hawtin (IPGRI), Ed Rege (ILCA/ILRI), Ali Golmirzaie (CIP), Jan Valkoun (ICARDA), ??, ??, Masa Iwanaga (IPGRI), Roger Rowe (CIMMYT), ?? (World Agroforestry), Melak Mengesha (ICRISAT), Mike Jackson (IRRI), Murthy Anishetty (FAO), Quat Ng (IITA), Jean Hanson (ILCA/ILRI), and Jan Engels (IPGRI).

I was elected Chair of the ICWG-GR at that Addis meeting, and remained in that role for the next three years, overseeing a major review of genetic resources roles of the centers that led to the launch of the System-wide Genetic Resources Program (SGRP) in 1994. The SGRP was active for around a couple of decades, but has now been replaced by the CGIAR Genebank Platform that . . . led by the Crop Trust, enables CGIAR genebanks to fulfill their legal obligation to conserve and make available accessions of crops and trees on behalf of the global community under the International Treaty on Plant Genetic Resources for Food and Agriculture.

Enjoying a break in discussions in Kenya when World Agroforestry hosted the ICWG-GR in 1998. Bent Skovmand is on the far left.

I don’t remember the details of all the ICWG-GR meetings and their dates, but after 1993 we met at ICARDA in Aleppo, Syria; CIP in Lima, Peru; IITA in Ibadan, Nigeria; IFPRI in Washington, DC; CIFOR in Bogor, Indonesia; World Agroforestry in Nairobi, Kenya; and at IPGRI in Rome on at least a couple of occasions. But not necessarily in that order.

These meetings were a great opportunity to catch up with old friends, besides discussing and setting in train some important policy decisions for the centers regarding the management of and access to the important germplasm collections conserved in their genebanks.

Among the many members of the ICWG-GR, there was one with whom I struck up a particular friendship. This was Dr Bent Skovmand (above), a Danish plant pathologist in charge of the wheat genebank at CIMMYT (the International Center for Maize and Wheat Improvement) in Mexico.

Bent and me during the 1998 meeting of the ICWG-GR meeting held in Kenya.

I’m not sure why Bent and I hit it off so well. I think it was because we didn’t take ourselves too seriously. Perhaps it was our mutual love of beer!

Besides the ICWG-GR meetings, Bent and I would often meet at the annual conferences (usually in November) of the Crop Science Society of America (CSSA) held in different cities in the USA. Bent was a very active member in what was then the C8 Section of the Society, and what I think is now the Plant Preservation section or group.

Bent studied at the University of Minnesota in St Paul on the Minnesota Agricultural Student Trainee international exchange program, gaining a masters degree in 1973 and his PhD in 1976 (in plant pathology). He then joined CIMMYT and remained there for much of his career until 2003. Before heading the wheat genebank, he had also spent time with CIMMYT in Turkey.

In 2003 he was honored twice. First he received the Frank N Meyer Medal for Plant Genetic Resources from the CSSA. Then, Queen Margrethe II of Denmark awarded him the Knight’s Cross of the Order of the Dannebrog.

But, in some ways, these awards were bittersweet. CIMMYT restructured in 2003, and Bent was made redundant. Having spent so many years at a center that he loved, and based in Mexico (the home of his second wife Eugenia) it was a huge blow to have to leave. Not yet 60, he looked for other employment opportunities, and was soon appointed Director of the Nordic Gene Bank (NGB, now NordGen) in Alnarp, Sweden. In that position, he took a lead role in the establishment of the Svalbard Global Seed Vault, which opened its doors in February 2008.

Entrance to the Svalbard Global Seed Vault. (Courtesy of the Crop Trust).

Bent never got to see this event. Having been diagnosed with a brain tumor some months earlier and his health deteriorating rapidly, he passed away in February 2007.

There’s one particular memory I have of Bent. When in Rome together, he and I would try and eat, at least once, in the Taverna Cestia at the southern end of the Viale Aventino, near the Pyramid of Caius Cestius. Just inside the entrance, on a side-table, was a large meat slicer for carving prosciutto ham. It looked like it had been there for decades.

Every time we ate there, Bent would tell me: ‘I’m going to make them an offer for that slicer, one day.‘ He never did.

Sadly missed by his friends and colleagues in the genetic resources community, not just among the CGIAR centers, but more widely around the world, Bent left a strong and deservable legacy.


I found this obituary for Bent that was published on the website of The American Phytopathological Society (APS). But I have also downloaded it as a PDF file, accessible here.

Around the world in 40 years . . . Part 26: A sojourn in Sri Lanka

I visited Sri Lanka just the once. However, I don’t even remember which year or month. Only that it was the early 1990s, probably around 1993 or 1994. That was when I was planning a major rice conservation project at IRRI, and I wanted to determine if or how any Sri Lankan organizations would participate. As it turned out, for reasons that I’ll explain in due course, Sri Lanka did not join the project.

The Sri Lankan genebank, The Plant Genetic Resources Centre (PGRC) is based in Kandy in the island nation’s Central Province, of which it is the capital. It lies amongst the hills of the central plateau. The hills surrounding Kandy are covered in tea plantations. And, in many ways, Kandy is a magical place to visit. The scenery is outstanding.

Although I don’t remember in which hotel I stayed, I do remember it was perched on the summit of one of the hills, with views in every direction, as you can see in the gallery above. In the stillness of the dawn, I woke each morning to the sounds of birds calling to each other across the valleys. What a wonderful start to the day.

Kandy is home to a magnificent botanical garden (the Royal Botanical Gardens at Peradeniya just west of the city) and one of Buddhism’s most sacred places of worship, the Temple of the Tooth or Sri Dalada Maligawa, is located in the city center.


The Plant Genetic Resources Centre was opened in 1990. Its construction was a donation from the Government of Japan in 1989. So when I visited it had been open for just a few years—and looked like it. But, unlike one or two other genebanks whose construction Japan had supported in other Asian countries, the staff at PGRC were certainly making the most of their expanded facilities to store seeds and tissue culture or in vitro conservation.

Once again I am unable to name most of the people I met at PGRC, with one exception: Mr CN Sandanayake, who was one of my MSc students at the University of Birmingham in 1986.

CN Sandanayake talks with one of his colleagues at PGRC.

And as you can see from one of the photos in the gallery above, everything stops for tea!

When I discussed participation in the IRRI-led rice biodiversity project, it was clear that Sri Lanka had already made significant progress to collect and conserve indigenous rice varieties and wild species. My former colleague at IRRI, Dr Duncan Vaughan had visited Sri Lanka in the 1980s to help with the collection of wild rices.

Furthermore, PGRC had a cadre of excellent technical staff, and as you can see from the photos, excellent facilities for germplasm conservation. And, given the ongoing civil war there were many no-go areas in the country, especially in the north and east. However, in Kandy, there was no tangible signs of the conflict.

I made a side trip, with Sandanayake, to the Rice Research & Development Institute at Batalagoda, some 50km north of Kandy. Here are a couple of photos I took on that journey.

There I met with MS Dhanapala, a rice breeder who had also come to Birmingham in the 1980s to attend short courses on plant genetic resources, and also spend some time in the Department of Genetics.

Sitting, L-R: Dhanapala, me, Sandanayake. I don’t remember the names of those standing.

Sri Lanka has had a very successful rice breeding program, and many of its varieties have been adopted throughout Asia, after being shared and trialled through INGER, the IRRI-led International Network for the Genetic Evaluation of Rice, that I wrote about in 2015.


Now to return to Kandy tourism.

The Royal Botanic Gardens at Peradeniya cover almost 150 acres. There are wide open spaces to wander around, but also exquisite orchid houses to enjoy, with a multiplicity of species and varieties to take in.

As I mentioned, the Temple of the Tooth is a sacred shrine to Buddhists, and although not overrun with pilgrims during my visit was, nevertheless, quite busy.

One of the most impressive exhibits, in a side room, is a huge, stuffed elephant that died in 1988. This was Raja, a tusker who led ceremonial processions from the Temple for over 50 years.

All too soon my stay in Kandy was over, and I headed down to Colombo on the west coast to take my flight back to Singapore, and from there to the Philippines. It’s certainly a country I would like to return to.


 

Around the world in 40 years . . . Part 25: Walking the Great Wall of China

During the nineteen years I spent in the Far East, I visited China just twice. The first time was in March 1995, and this post is all about that visit. It must have been in 2009 that I was in China again, for the annual meeting of the CGIAR (Consultative Group on International Agricultural Research) held in Beijing, just across the street from the famous Beijing National Stadium (aka Bird’s Nest) built for the 2008 Olympic Games.

However, back to 1995.

Dr Bao-Rong Lu

A year earlier I had recruited Dr Bao-Rong Lu (a Chinese national from the southwest Sichuan Province) to work in IRRI’s Genetic Resources Center (GRC) on the diversity of wild rice species. Bao-Rong had just completed his PhD in Sweden at the Swedish University of Agriculture under the supervision Professor Roland von Bothmer, studying the cytogenetics of wheat species, if memory serves me correctly. He had also spent some months working at the Institute of Botany, The Chinese Academy of Sciences (IB-CAS), in Beijing prior to joining IRRI.

With a major rice biodiversity project getting underway at IRRI in 1995, I decided that a visit to China with Bao-Rong was the appropriate moment to initiate some further contacts and possible collaboration. Our visit took in three cities: Beijing, Hangzhou (in Zhejiang Province west of Shanghai), and Guangzhou (Canton) in the south.

First stop was the IB-CAS where I met with the Director (whose name I cannot recall, unfortunately) and many of the staff.

With the Director of the Institute of Botany and staff. Bao-Rong is standing on my left, and the Director on my right.

I was invited to present a seminar about the International Rice Genebank at IRRI and its role in the global conservation of rice genetic resources.

There was also some time for sightseeing around Beijing, and this was my opportunity to tick off another item on my bucket list: walking on the Great Wall of China (at Mutianyu, about 45 miles north of Beijing).

As you can see from these photos, there were few visitors, unlike scenes I have seen in the media in recent years.

We also took a tour of the Forbidden City in Beijing, and a walk around Tiananmen Square. Again not crowded! In one of the photos you can see the Great Hall of the People behind Bao-Rong. During the CGIAR meeting in Beijing that I mentioned earlier, the official dinner (and entertainment) was hosted by the Chinese in the Great Hall. It’s massive!

The photos appear hazy, because it was. It was quite cold in Beijing in March, with a stiff northwesterly breeze blowing over the city, laden with dust from the far west of China. It felt like being sand-blasted.

We also visited some Ming era tombs near Beijing, but I’m unable to find any photos of that particular visit.

On one night the Vice President of the Chinese Academy of Sciences hosted a small dinner in my honor. On another, Bao-Rong introduced me to the delights of spicy Sichuan cuisine. There was a Sichuan restaurant in our hotel where all the staff were from the province.

Trevor Williams

Later that same evening, as Bao-Rong and I were enjoying a beer in the bar overlooking the hotel reception, I saw someone who I recognised enter the dining room. I had to investigate. And, lo and behold, it was Trevor Williams who had supervised my MSc dissertation at the University of Birmingham in 1971. Around 1977, Trevor left Birmingham to become the first Director of the International Board for Plant Genetic Resources (IBPGR – now Bioversity International) in Rome. In 1995 I hadn’t seen Trevor for about six years, and so we spent the rest of the evening catching up over rather too many beers. Having left IBPGR by then, he was in Beijing setting up an organization that would become INBAR, the International Network for Bamboo and Rattan with its headquarters in Beijing.

After a few days in Beijing, we headed south to the city of Hangzhou (inland from Shanghai on the Qiantang River) in Zhejiang province. We were there to visit the China National Rice Research Institute (CNRRI) and meet with its director Professor Ying Cunshan. Professor Ying participated in the rice biodiversity project as a member of the project Steering Committee. CNRRI is the home of China’s largest rice genebank, which was modelled (inadvisedly in my opinion) on the genebank at IRRI.