Are you plant blind?

In our 1986 book Plant Genetic Resources: An Introduction to their Conservation and Use, my former colleague and friend of almost 50 years, Professor Brian Ford-Lloyd and I wrote (on page 1):

To most people the word ‘conservation’ conjures up visions of lovable cuddly animals like giant pandas on the verge of extinction. Or it refers to the prevention of the mass slaughter of endangered whale species, under threat because of human’s greed and short-sightedness. Comparatively few  however, are moved to action or financial contribution by the idea of economically important plant genes disappearing from the face of the earth. . . . But plant genetic resources make little impression on the heart even though their disappearance could herald famine on a greater scale than ever seen before, leading to ultimate world-wide disaster.

Hyperbole? Perhaps. Through our 1986 lens that did not seem far-fetched. And while it’s fair to say that the situation today is better in some respects than Brian and I predicted, there are new threats and challenges, such as global warming.

The world needs genetic diversity to breed varieties of crops that will keep agricultural systems sustainable, allow production of crops in drought-prone regions, where temperatures are increasing, and where new races of diseases threaten even the very existence of agriculture for some crops.

That genetic diversity comes from the hundreds of thousands of crop varieties that farmers have nurtured for generations since the birth of agriculture millennia ago, or in closely related wild species. After all, all crops were once wild species before domestication.

These are the genetic resources that must be safely guarded for future generations.

The work of the International Board for Plant Genetic Resources (IBPGR), then the International Plant Genetic Resources Institute (IPGRI), was pivotal in coordinating and supporting genetic resources programs worldwide, in the 1970s, 80s and 90s.

Then a new and very important player came along. Over the past decade and half the Crop Trust, has provided long-term support to some of the world’s most important genebanks.

International mechanisms have been put in place to support collection, conservation, study, and use of plant genetic resources. Yet, much remains to be done. And ‘Joe Public’ is probably still as unaware of the importance of the crop varieties and their wild relatives (and perhaps plants in general) as we feared more than three decades ago.


Wildlife programs on TV are mostly about animals, apart from the weekly gardening programs, and some such as David Attenborough’s The Private Life of Plants (broadcast in 1995). Animal programs attract attention for precisely the reasons that Brian and I highlighted in 1986. A couple of nights ago for instance I watched a fascinating, hour-long program on the BBC about hippos in the Okavango Delta of Botswana. Wonderful footage revealing never-before-seen hippo behaviour and ecology.

When it comes to genetic resources, animals don’t do so badly either, at least here in the UK. We get an almost weekly item about the importance of rare breeds of livestock and their imperiled status during the BBC’s flagship Countryfile program on Sunday evenings presented by farmer Adam Henson, whose father Joe helped set up the Rare Breeds Survival Trust (RBST) in 1973. The RBST has been pivotal in rescuing many breeds from the brink of extinction. Just last night (28 July) Adam proudly showed an Albion calf born the day before on his farm in the Cotswolds. The Albion breed is one of the rarest in the UK.

Photo credit: the RBST

But that says very little about all the endangered livestock breeds around the world that are fortunately the focus of the work of the International Livestock Research Institute (ILRI).

Ankole cattle from southwestern Uganda (photo credit: ILRI/Stevie Mann).

However . . .

When was the last time—if ever—you watched a TV documentary about the rare (so-called ‘heritage’) varieties of the food plants on which we depend, or their closest wild species relatives, such as the barleys of Ethiopia or the potatoes of the South American Andes, for instance. And would you really care if you hadn’t?

Are you even aware that the barleys that we use for brewing originally came from Ethiopia and the Middle East? Or that the Spanish brought the potato back to Europe in the 16th century from Peru? What about your daily cups of tea or coffee?

These are just some of the myriad of fascinating histories of our food crops. Today many of these staples are often more important in agriculture in parts of the world far distant from the regions where they originated and were first domesticated.

In the UK, enthusiasts will be aware of heritage vegetable varieties, and the many varieties of fruits like apples that have disappeared from commercial orchards, but are still grown at places like Berrington Hall in Herefordshire.

Take a look at this article by freelance communicator Jeremy Cherfas about the origins of the food we eat. Jeremy has written a lot about genetic resources (and many other aspects of sustainable agriculture). As he says, you may discover a few surprises.

In centers of domestication, the diversity of the crops grown by farmers is impressive indeed. It’s wonderful. It’s BEAUTIFUL! The domestication of crops and their use by farmers worldwide is the story of civilization.

Here are just a few examples from beans, maize, cocoa, cucurbits, wheat, and lentil.

And take a look at the video below.

Who could fail to be impressed by such a range of shapes and colors of these varieties? And these varieties (and wild species) contain all the genes we need to keep crops productive.

Plant genetic resources: food for the stomach, food for the soul.


My own work since 1971 concerned the conservation and use of potatoes and rice (and some legume species as side projects).

In Peru, I came to learn just how important potatoes are for communities that live at altitude in the Andes. Could the Inca empire have grown and dominated the region had there been no potatoes (and maize)?

Machu Picchu

And there are so many wild species of potatoes that can be found from the southern USA to the south of Chile and east into the plains of Brazil. The International Potato Center (CIP) in Lima (where I worked for over eight years) has the world’s largest genebank of potato varieties. Important wild species collections are maintained there, as well as in Scotland at the Commonwealth Potato Collection (maintained by the James Hutton Institute), and the USA, at the NRSP-6 Potato Genebank in Sturgeon Bay, WI.

Rice is the food of Asia. There are thousands upon thousands of varieties that grow in standing water, or on sloping uplands, or in areas that flood and so have evolved to elongate rapidly to keep pace with rising flood waters.

Here is a selection of images of rice diversity in Laos, one of the countries that we explored during the 1990s.

Would it have been possible to build the temple complex at Angkor Wat in Cambodia in the 12th century without rice? It has been estimated that upwards of one million workers were employed in its construction. That workforce needed a constant supply of staple rice, the only crop that could be grown productively in this monsoon environment.

These potato and rice examples are the tip of the genetic resources and civilization history iceberg. Think about the origins of agriculture in Turkey and the Mideast, 10,000 years ago. Remains of wheat, barley and pulses like lentil and chickpea have been found at the earliest cities in that region. And these histories are repeated all around the world.


In 1983 and 1984, BBC2 aired two series of a program called Geoffrey Smith’s World of Flowers, in which Smith (a professional gardener and broadcaster) waxed lyrical on the history of many of his favorite garden plants, and their development in cultivation: tulips from Turkey, dahlias from Mexico, lilies from North America, and many, many more.

In these programs, he talked about where and how the plants grow in the wild, when they had been collected, and by whom, and how through decades (centuries in some cases) of hybridization and selection, there are so many varieties in our gardens today. The programs attracted an audience of over 5 million apparently. And two books were also published.

I had an idea. If programs like these could be so popular, how about a series on the food plants that we eat, where they originated, how they were domesticated, and how modern varieties have been bred using these old varieties and wild species. I envisaged these programs encompassing archaeology and crop science, the rise of civilizations, completing the stories of why and which crops we depend on.

I wrote a synopsis for the programs and sent it to the producer at the BBC of the Geoffrey Smith programs, Brian Davies. I didn’t hear back for several weeks, but out of the blue, he wrote back and asking to come up to Birmingham for a further discussion. I pitched the idea to him. I had lots of photos of crop diversity and wild species, stories about the pioneers of plant genetic resources, like Vavilov, Jack Harlan, Erna Bennett, and Jack Hawkes, to name just a few. I explained how these plant stories were also stories about the development and growth of civilizations, and how this had depended on plant domestication. Stories could be told from some of the most important archaeological sites around the world.

Well, despite my enthusiasm, and the producer warming to the idea, he eventually wrote back that the BBC could not embark on such a series due to financial limitations. And that’s all I heard. Nevertheless, I still think that a series along these lines would make fascinating television. Now who would present the series (apart from myself, that is!)?

Maybe its time has come around again. From time-to-time, interesting stories appear in the media about crops and their origins, as this recent one about cocoa and vanilla in the Smithsonian Magazine illustrates.

But we need to do more to spread the plant genetic resources ‘gospel’. The stories are not only interesting, but essential for our agricultural survival.


 

What’s wrong with ‘a bowl of alphabet soup’?

A rice farmer in northern Laos with her family

CGIAR? CG? CeeGee? Or should that be CIGAR?

The CGIAR is, it seems, a mystery to almost the entire world population, even those billions whose survival depends on the outputs of CGIAR-funded agricultural research. Recently, philanthropist Bill Gates wrote in his blog that . . . you’ve probably never heard of CGIAR, but they are essential to feeding our future. Fair comment.

Originally known as the Consultative Group on International Agricultural Research but more commonly just CGIAR today, it is the world’s largest global agricultural innovation network.

Founded in 1971, under the auspices of the World Bank, to coordinate international agricultural research efforts aimed at reducing poverty and achieving food security in developing countries, the network today supports 15 independent agricultural research institutes or centers. CGIAR brings evidence to policy makers, innovation to partners, and new tools to harness the economic, environmental and nutritional power of agriculture.

The centers carry out research on the world’s most import food crops (such as wheat, maize, and rice among many others), water and biodiversity management, livestock and fish, tree and forest systems, the dynamics of the world’s most challenging agricultural ecosystems, and food and agricultural policy.

Their research agendas contribute significantly towards the United Nations Sustainable Development Goals. And, of course, much of the research today is directed towards combating the threat (and challenges) of a changing climate that will affect agricultural productivity in most parts of the world in decades to come. In his blog piece, Gates rightly highlights the important climate-related research ongoing at two centers in Mexico and Nigeria, the International Maize and Wheat Improvement Center (CIMMYT) and International Institute for Tropical Agriculture (IITA), respectively. There’s more going on in the other centers coordinated through a cross-center research program.

Many billions of dollars have been invested in international agricultural research over the past 50 years or so. But the economic return through increased productivity has been many billions of dollars more.

But we shouldn’t just look at the economic benefits, important as they are. Millions upon millions of people have been taken out of poverty, and despite a worrying reversal of the favorable downward trend of food insecurity (due to economic slowdowns and downturns around the globe, as outlined in a recent report from several international agencies), more people benefit today from access to better crop varieties or improved practices. Many farmers can now afford to provide education opportunities for their children which they were unable to do without access to new technologies.

The centers supported through CGIAR are the key international players for conservation of genetic diversity found in farmer varieties and wild species of crop relatives. This genetic material or germplasm is safely stored in the genebanks at eleven of the centers. More importantly, this germplasm is being studied and used to breed better-adapted varieties.


When CGIAR was founded in 1971 there were already four centers, which were ‘adopted’ for funding support. The International Rice Research Institute, IRRI, based in the Philippines, is the oldest, founded in 1959 [1] and about to celebrate its Diamond Jubilee later this year.

Then came the Mexico-based CIMMYT in 1966 (although its antecedents stretch back to 1943 and a Rockefeller Foundation-funded program in Mexico), followed in 1967 by the International Center for Tropical Agriculture, CIAT, in Colombia and IITA, in Nigeria. Others followed over the next decade or so, but the number has fluctuated as centers merged, or even closed down.

I worked at two of these centers over a period of 27 years, as a junior/senior scientist in Peru and Central America at the International Potato Center or CIP that was founded in 1971 [2]; and as a Head of Department, then Director, at IRRI.


IRRI, CIMMYT, CIAT, IITA. Just four of the research institute acronyms that seemingly roll off the tongue. Yet, these very acronyms seemingly conspire to confuse. Even Bill Gates seems overwhelmed by center branding, stating that with so many acronyms being bandied about that the  . . . uninitiated feel[ing] as if they’ve fallen into a bowl of alphabet soup.

In the early years, CGIAR was an informal association of donor agencies that agreed to coordinate their funding to support the small numbers of centers that at one stage in the 1990s was allowed to grow to about 18 centers. At least one center closure and some mergers have come about since. And the funding model has changed.

Towards the end of the 1990s there was a growing concern among the donors of the centers—the members of CGIAR (centers are not members per se)—that there was too much duplication among centers in terms of their research programs, that their relationships with research programs in developing countries was burdensome for some of those programs, and that donor interests were not being met. Twenty years on, and despite changes to the funding model whereby donors have much more control over research projects in the centers, and the development of cross-center programs (with all the transactions paraphernalia that comes with these, such as meetings across continents, performance targets, and the added costs of just doing business), the profile of CGIAR remains weak (if we accept Bill Gates’ line of argument).

Why can that be, despite the intensive efforts to remedy this situation. In 1998 the centers supported by the CGIAR created Future Harvest as a charitable and educational organization designed to advance the debate on how to feed the world’s growing population without destroying the environment and to catalyze action for a world with less poverty, a healthier human family, well-nourished children, and a better environment.

It was a doomed rebranding initiative from the outset, yet survived several years. Centers were branded as members of the Alliance of Future Harvest Centers, a branding that has all but disappeared. It’s almost impossible to find any reference to Future Harvest on the web, and I only came across one logo on the inside of one publication. One of the reasons why Future Harvest failed is that while the concept was probably fine for the English-speaking world, it found no counterpart in Chinese, Hindi, Bahasa Indonesia, Swahili, or whatever. Future Harvest? What does that mean?

But it started, in my opinion, from a lack of understanding (misunderstanding, perhaps) of the power of branding of the individual centers. CGIAR (Future Harvest) is the sum of its parts, the independent centers that actually do the research. IRRI is a more powerful, and known, brand in Asia in particular [3]. The same goes for CIMMYT in Mexico, India, and Pakistan, and for the other centers where they operate.

Yes, the initiatives to permit centers to align their agendas and work more closely are worthwhile. But at the outset, the funding model was such that centers found themselves having to bid to become members of the new system programs, just to survive. Not a good reason for inter-center collaboration.

I have no problem with Gates’ bowl of alphabet soup. Fifteen acronyms (that you can actually pronounce) is a small price for strong branding, as long as full names are explained as well. This situation is no different from what you can find in any country. Just take the UK: NIAB (National Institute of Agricultural Botany in Cambridge); JIC (John Innes Centre in Norwich); or JHI (James Hutton Institute, in Dundee and Aberdeen). No-one seems perturbed recognizing these prestigious institutions either by their acronym or name. Why should there be any difficulty for the centers supported by CGIAR?

In response to Gates’ blog post, one tweeter (who had worked at one of the centers, CIMMYT I believe) stated that this ‘confusion’ was a sound justification for merging centers into one institute. I couldn’t disagree more. The strength of CGIAR lies in its diversity. Centers are strategically located around the world. Institutional (and national staff) cultures and set ups are very different. Doing business over time zones is problematical.

Merging organizations is never easy. One ‘partner’ inevitably loses out to another (take the Delta-NWA merger; who now remembers NWA?) One successful merger among CGIAR centers led to the creation of the International Livestock Research Institute or ILRI (bringing together the International Laboratory for Research on Animal Diseases in Nairobi, and the International Livestock Centre for Africa in Addis Ababa). Not all mergers or alliances prosper however. Closer links between IRRI and CIMMYT in the in the early 2000s came to nothing despite best efforts, and having two Board of Trustees members common to both. It remains to be seen how closer links between Bioversity International in Rome and CIAT, or the World Agroforestry Centre in Nairobi and the Center for International Forestry Research, or CIFOR in Bogor, Indonesia, pan out.

As you can see I’m a believer in the power, and identity, of the centers. After all, that’s where the research is planned strategically, where the scientists reside, and where they do their work. Branding is important and can make all the difference for delivering the right message.

Let’s celebrate how CGIAR has supported international agricultural research for almost five decades and continues to provide the framework for that to continue. Yes, the world needs to know and understand the importance of CGIAR and what it stands for. Equally, I would argue, let’s celebrate the work of IRRI, CIMMYT, IITA, CIAT, CIP, IFPRI, Bioversity International, ICARDA, IWMI, ILRI, World Agroforestry, Worldfish, CIFOR, ICRISAT, and Africa Rice.


[1] A Memorandum of Understanding was signed in December 1959 between the Government of the Philippines and the Rockefeller and Ford Foundations to establish IRRI. The Board of Trustees met in April 1960 to approve the institute’s constitution and by-laws. Thus, IRRI has two ‘birthdays’. The 50th anniversary was celebrated on 9 December 2009 and 14th April 2010.

[2] I was originally due to join CIP in September 1971, when I completed my MSc, and the CIP Director General, Richard Sawyer, had approached the forerunner of the UK’s Department for International Development for funding to support my assignment in Peru. But the UK was at that very moment deciding whether to fund CIP bilaterally or join CGIAR and fund the center’s work that way. My departure for Peru was delayed for 15 months.

[3] In about 2004, I was invited to a meeting on biotechnology and intellectual property rights in Malaysia, near Kuala Lumpur. My flight from Manila arrived in KL around 11 pm, and I had to take a taxi to the resort where the meeting was being held, about 35 km or so. I don’t remember if a taxi had been sent for me, or I just took the next one in the rank outside the terminal building exit. On the journey, the driver started asking me a few questions, and when I told him I worked in agriculture in the Philippines, he replied: ‘I guess you must work at IRRI’ or words to that effect. He knew all about IRRI. Notwithstanding he had once been a driver for Malaysia’s Minister of Agriculture, he was indeed very knowledgeable about rice and IRRI’s role. I was more than surprised.

 

Exploring the southern Lincolnshire Wolds and Cambridgeshire Fens*

Last week, Steph and I spent three days exploring five National Trust and English Heritage properties in Lincolnshire and Cambridgeshire. This is not an area with which we are familiar at all. We spent the first night on the coast at Skegness, and the second in the Georgian town of Wisbech.

It was a round trip of just under 360 miles from our home in Bromsgrove, taking in nine counties: Worcestershire, West Midlands, Warwickshire, Leicestershire, Nottinghamshire, Lincolnshire, Cambridgeshire, Norfolk (for about three minutes), and Rutland.

Our first stop was Tattershall Castle in Lincolnshire. There has been a fortified residence on this site since the mid thirteenth century, but it wasn’t until two centuries later that the remarkable brick tower was built. This is quite unusual for any castle, and Lord Cromwell is believed to have seen such buildings during his sojourns in France.

The tower and part of a stable block are all that remain today, although the position of other towers and a curtain wall can be seen. The whole is surrounded by a double moat.

Like so many other castles (see my blogs about Goodrich Castle in Gloucestershire, Corfe Castle in Dorset, and Kenilworth in Warwickshire) Tattershall was partially demolished (or slighted) during the Civil Wars between 1642 and 1651.

And over the subsequent centuries it slipped into decay. Until the 1920s when a remarkable man, Viscount Curzon of Kedleston (near Derby) bought Tattershall Castle with the aim of restoring it to some of its former glory, the magnificent tower that we see today.

The castle was then gifted to the National Trust in whose capable hands it has since been managed.

There is access to the roof (and the various chambers on the second and third floors) via a beautiful spiral stone staircase, quite wide by the normal standard of such staircases. But what makes this one so special is the carved handrail from single blocks of stone. And on some, among all the other centuries-old graffitti, are the signatures of some of the stonemasons.

Do take a look at this album of photos of Tattershall Castle.

Just a mile or so southeast of the castle is RAF Coningsby, very much in evidence because it’s a base for the RAF’s Typhoon aircraft, and a training station for Typhoon pilots. So the noise from these aircraft is more or less constant. However, RAF Coningsby is also the base for the Battle of Britain Memorial Flight, and just as we reached the car park on leaving Tattershall, we were treated to the sight of a Lancaster bomber (the iconic stalwart of the Second World War Bomber Command) passing overhead, having just taken off from the airfield, just like in the video below. At first, it was hidden behind some trees, but from the roar of its engines I knew it was something special. Then it came into view while banking away to the east.

Just 20 miles further east lies Gunby Hall, a William and Mary townhouse masquerading as a country house, and built in 1700. The architect is not known.

It was built by Sir William Massingberd (the Massingberds were an old Lincolnshire family) and was home to generations of Massingberds until the 1960s. You can read an interesting potted history of the family here.

Gunby Hall, and almost all its contents accumulated by the Massingberds over 250 years were gifted to the National Trust in 1944. Lady Diana Montgomery-Massingberd (daughter of campaigner Emily Langton Massingberd) was the last family member to reside at Gunby, and after her death in 1963, tenants moved in until 2012 when the National Trust took over full management of the house, gardens and estate.

Gunby is remarkable for two things. During the Second World War, the house was in great danger of being demolished by the Air Ministry because the runway at nearby (but now closed) RAF Spilsby had to be extended to accommodate the heavy bombers that would operate from there. But Sir Archibald Montgomery-Massingberd (husband of Lady Diana) was not a man without influence. He had risen to the rank of Field Marshal, and had served as Chief of the Imperial General Staff between 1933 and 1936. After he wrote to the king, George V, the location of the runway was changed, and Gunby saved.

It was then decided to gift the property and contents to the National Trust. So what we see in the house today is all original (nothing has been brought in from other properties or museums).

Sir Archibald Montgomery-Massingberd started life a simply Archibald Montgomery, but changed his name by deed poll to Montgomery-Massingberd on his marriage to Diana. It was a condition of the inheritance of the estate that the name Massingberd was perpetuated. Both he and Diana are buried in the nearby St Peter’s Church on the edge of the gardens.

Although not extensive, Steph and I thought that the gardens at Gunby were among the finest we have seen at any National Trust property. Yes, we visited in mid-summer when the gardens were at their finest perhaps, but the layout and attention to detail from the gardeners was outstanding. Overall the National Trust volunteers were knowledgeable and very friendly. All in all, it was a delightful visit.

You can see more photos here.

On the second day, we headed west from our overnight stay in Skegness on the coast (not somewhere I really want to visit again), passing by the entrance to Gunby Hall, en route to Bolingbroke Castle, a ruined castle owned by English Heritage, and birthplace of King Henry IV in 1367, founder of the Lancaster Plantagenets.

There’s not really too much to see of the castle except the foundations of the various towers and curtain wall. Nevertheless, a visit to Bolingbroke Castle is fascinating because English Heritage has placed so many interesting information boards around the site explaining the various constructions, and providing artist impressions of what the castle must have looked like.

So the castle footprint is really quite extensive, surrounded by a moat (now just a swampy ditch) that you can walk around, inside and out, taking in just how the castle was built.

A local sandstone, rather soft and crumbly, was used and couldn’t have withstood a prolonged siege. Interspersed in the walls, now revealed by deep holes but still in situ elsewhere, are blocks of hard limestone that were perhaps used for ornamentation as well as giving the walls additional strength. The castle was slighted in the Civil Wars of the 1640s.

The complete set of Bolingbroke photos can be viewed here.

Heading south to Wisbech, our aim was Peckover House and Garden, occupied from the 1770s until the late 1940s by the Peckover family of Quakers and bankers.

Peckover House is a detached Georgian mansion, among a terrace of elegant houses on North Brink, the north bank of the tidal River Nene, and facing a counterpart terrace on South Brink, where social reformer Octavia Hill, one of the founders of the National Trust, was born in 1838.

Standing in front of Peckover House, it’s hard to believe that there is a two acre garden behind. Among the features there is a cats’ graveyard of many of the feline friends that have called Peckover home.

Inside the house, I was reminded (though on a much smaller scale) of Florence Court in Northern Ireland that we visited in 2017. The hall and stairs are a delicate duck-egg blue, and there and in many of the rooms there is exquisite plasterwork. Above the doorways downstairs are fine broken pediments.

The most celebrated of the family was Alexander (born in 1830) who traveled extensively and built an impressive collection of books and paintings. He was Lord Lieutenant of Cambridgeshire, and was elevated to a peerage in 1907.

He bought one of his books, a 12th century psalter, in about 1920 for £200 or so. Now on loan from Burnley library and displayed in Alexander’s library, the book has been insured for £1,200,000!

Check out more photos of Peckover House and garden.

Our final stop, on the way home on the third day, was Woolsthorpe Manor, birthplace of Sir Isaac Newton, President of the Royal Society, who was born on Christmas Day in 1642 three months after his father, also named Isaac, had passed away.

This is the second home of a famous scientist we have visited in the past couple of months, the first being Down House in Kent, home of Charles Darwin. Woolsthorpe has become a pilgrimage destination for many renowned scientists, including Albert Einstein and Stephen Hawking who are shown in some of the exhibits.

Woolsthorpe is not a large property, comprising a limestone house and outbuildings. It has the most wonderful tiled roof.

It came into the Newton family as part of the dowry of Isaac Sr.’s marriage to Hannah Ayscough. Keeping sheep for wool production was the principal occupation of the family.

Isaac Newton won a place at Trinity College, Cambridge but had to escape back to Woolsthorpe during an outbreak of the plague in 1665 and 1666. He thrived and the 18 months he spent at Woolsthorpe were among his most productive.

Open to the public on the upper floor, Newton’s study-bedroom displays his work on light that he conducted there.


And from the window is a view over the orchard and the famous Flower of Kent apple tree that inspired his views on gravitation.

On the ground floor, in the parlour are two portraits of Newton, one of him in later life without his characteristic wig, and, high above the fireplace, his death mask.

Also there are early copies (in Latin and English) of his principal scientific work, the Principia Mathematica, first published in 1687.

There’s a full album of photos here.

And, with the 50th anniversary of Apollo 11 and the first landing on the Moon on 20 July 1969, there was a display of NASA exhibits and how Newton’s work all those centuries ago provided the mathematical basis for planning a journey into space. The National Trust has also opened an excellent interactive science display based on Newton’s work that would keep any child occupied for hours. I’m publishing this post on the anniversary of Apollo 11’s blast off from Cape Kennedy, now Cape Canaveral once again.

All in all, we enjoyed three excellent days visiting five properties. Despite the weather forecast before we set out, we only had a few minutes rain (when we arrived at Bolingbroke Castle). At each of the four National Trust properties the volunteer staff were so friendly and helpful, full of details that they were so willing to share. If you ever get a chance, do take a couple of days to visit these eastern England jewels.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

* The Lincolnshire Wolds are a range of hills, comprised of chalk, limestone, and sandstone. The Fens are drained marshlands and a very important agricultural region.

Biddulph Grange – a masterpiece of Victorian garden design

Steph and I became members of the National Trust in 2011. Since then, we have enjoyed visiting more than 100 properties in England, Wales, and Northern Ireland, and a handful owned by the National Trust for Scotland.

One of the first properties we visited in 2011 was Biddulph Grange Garden, between Biddulph (in North Staffordshire) and Congleton (where I was born) in southeast Cheshire. And just over a week ago, we returned for a second visit.

My family had a long connection with Biddulph Grange, way before it was taken over by the National Trust in 1988. Before then, Biddulph Grange was an orthopaedic hospital, founded by Lancashire County Council in 1928 as a hospital ‘for the crippled children of East Lancashire’.

After the Second World War, my father, Fred Jackson, joined the Congleton Chronicle newspaper as a staff photographer. His work took him around the area, within a 10 mile radius I guess of Congleton, taking photos of local events and happenings for publication in the newspaper.

Every Christmas morning he would take photos of Santa visiting all the children on the wards at Biddulph Grange. Even after our family moved to Leek in 1956, Dad (accompanied by Mum) continued to visit Biddulph Grange at Christmas. I remember visiting on many occasions, and meeting the Matron (right), but I don’t remember her name.

During our 2011 visit, there was an album of old photos taken during the hospital years, and I believe many of them had been taken by Dad over the years. There was even a photo from one of the Nurses’ Balls, that Mum and Dad would attend each year (they loved ballroom dancing), and I found Mum among the large group of ball-goers.

The National Trust now looks after the Garden, while the house has been converted to private residential apartments. By the 1980s the garden had suffered from decades of neglect during the hospital years. Now the Trust has brought the garden back to its former glory, as envisaged by the couple who designed and built the garden in the mid-nineteenth century, James and Maria Bateman.

James Bateman was a wealthy landowner (and lay preacher) who bought an old rectory at Biddulph (he moved there from nearby Knypersley Hall) in the 1840s, and set about expanding it to the house we see today. Bateman and his wife were passionate gardeners. He was a keen horticulturalist, and collector of plants from around the world.

Assisted by Edward William Cooke, the Batemans built what has become a world-famous garden. Yet the Batemans did not reside at Biddulph for more than a couple of decades. It never ceases to amaze me how landscapers and gardeners in the 18th and 19th centuries spent all their energies creating gardens they would never come to appreciate in all the glory that we can enjoy today.

Bateman and Cooke’s garden takes you around the world—China, Egypt, and Italy, among others—but the garden is divided into areas and themes. Around every corner there’s something different to see and experience, glens to weave through, tunnels to duck into, and tree-lined walks (lime and Wellingtonia) to add to the broad landscape experience.

The resurrected Dahlia Walk is a real delight in late summer. During the hospital years it had been filled in, and once the National Trust had command of the Garden, it had to be excavated almost archaeologically to reveal its former glory. It’s certainly one of the highlights of the Garden, as are the various parterres below the house.

Here is just a small sample of photos of some areas of the garden which show the garden at two different seasons. Do take a look at this photo album for many more photos.

Another interesting feature is Bateman’s Geological Gallery, now refurbished by the National Trust.


 

Turbocharging rice photosynthesis – the vision and legacy of John Sheehy, a brilliant scientist

Yesterday, I received the sad news that my dear friend and former colleague at the International Rice Research Institute (IRRI), John Sheehy, had passed away on 7 June after battling Parkinson’s Disease and Multiple System Atrophy (MSA) for several years. He was just 76.

I first met John in 1995, when he applied for the position of Systems Modeller at IRRI. I was Chair of the Search Committee. John came to IRRI after a successful career at the Grassland Research Institute (GRI) in Hurley, Berkshire, until it closed in 1992. His groundbreaking (and award-winning) work at GRI on nodulation, gaseous diffusion, and nitrogen fixation in grassland legumes, and other aspects of crop physiology focused on yield potential.

I knew the first time I spoke with John he was someone who would bring a very different scientific perspective to IRRI’s research. And that’s just what he did. He wasn’t some fresh-faced graduate or postdoc expected to toe the line in terms of rice science orthodoxy, so to speak. Always polite, he often challenged the perspectives and approaches of some IRRI old timers who couldn’t (or wouldn’t) appreciate John’s breadth of quantitative expertise. He had graduated with a BSc degree in Physics, completed an MSc in Electronics, and then studied for his PhD in ecophysiology under Professor John Cooper, CBE FRS at the Welsh Plant Breeding Station in Aberystwyth.

In coming to IRRI, he led research on and supported breeding the so-called New Plant Type (NPT) that was expected to push the yield barrier in rice.

Setting up the Applied Photosynthesis and Systems Modeling Laboratory, John came to the conclusion that a completely new approach was needed if rice yields were to be increased significantly. That’s because photosynthesis in rice (known as C3 photosynthesis) is inefficient compared to the system (C4) in other cereals like maize. John began to develop ideas to turbocharge photosynthesis by introducing ‘C4’ traits into rice, thereby aiming to increase photosynthetic efficiency by 50%, as well as improve nitrogen use efficiency, and double water use efficiency.

Rather than me trying to explain the rationale for this vision, why not listen to John explaining the need for a C4 rice.

John appreciated that IRRI could not realize this dream of a C4 rice alone. So he set about persuading, and bringing together, a group of many of the best scientists worldwide in a C4 Rice Project, that is partly funded by the Bill & Melinda Gates Foundation. The continuing Project is an important part of John’s scientific legacy.

It is now coordinated by Professor Jane Langdale, CBE FRS at the University of Oxford.

At the time of his death, and after 20 years of research, C4 rice is not yet a reality, but significant progress has been made.


John’s scientific output was prodigious, and his many publications appeared in some of the best rated journals in his field, like Field Crops Research for example, a reflection of his research stature at IRRI (and before he joined IRRI). You can check his publications on Google Scholar.

He also waded enthusiastically into the controversy over the System of Rice Intensification or SRI, questioning—based on solid quantitative analysis of yield potential in rice—the yield claims of SRI adherents.


John retired in 2009 and returned to the UK. Before leaving IRRI, he met with Gene Hettel (former Head of IRRI’s Communication and Publications Services, and ‘IRRI Historian’) to record his thoughts on rice science and the challenges that IRRI would face.


In 2012, John was recognized in the New Year Honours (see page N.24) with an OBE for services to agricultural research and development, which was conferred during an investiture at Buckingham Palace on 14 February.

John receiving his OBE from HRH The Prince of Wales (L), and after the ceremony with wife Gaynor (L), and daughters Isabel (L) and Rhiannon (R).

In July 2014, John was honoured as a Fellow of his alma mater, Aberystwyth University.


In 2011, Steph and I joined John and Gaynor’s many friends and relatives to celebrate their 40th wedding anniversary.

L-R: Rhiannon, Gaynor, John, and Isabel

While at IRRI, John had taken enthusiastically to golf, and could be seen almost every weekend out on the golf course south of Los Baños where he had become a member. On his retirement to the UK, he was unfortunately unable to continue with this passion, due to bouts of poor health.

After I retired in 2010 back to the UK, John and I kept in touch regularly by email, on the phone, or SMS, when either Wales or Ireland were doing well at rugby, especially in the Six Nations championship. He had divided loyalties, born in Wales of Irish ancestry.

The last time I saw John was in July 2017, when Steph and I spent the weekend with him and Gaynor in Marlow, and met up with other IRRI friends, Graham and Sue McLaren (who now reside in Canada),

L-R: Gaynor, Graham, Sue, Steph, John, and me.

It was also an opportunity for John and me to swap OBE investiture reminiscences. I had also been made an OBE in the same New Year Honours as John, but attended an investiture two weeks later on 29 February.


John was a far better scientist than I could ever aspire to be. I always sought his advice on science issues. In return, he asked my advice about how to manoeuvre through institute politics and management to influence his research agenda, especially after I had moved upstairs, so to speak, to join IRRI’s senior management team.

But what I remember most about John was his cracking, but rather dry, sense of humor. His generosity of spirit. He was an excellent host. Many’s the dinner or BBQ Steph and I enjoyed with John, at his house or ours.

Christmas Day 2006 Chez Sheehy. L-R: John, Sue McLaren, Steph, Catherine McLaren, me, Gaynor, Alex McLaren, and Graham McLaren.

John, you will be sadly missed. Rest in Peace!


This obituary (written by Gene Hettel) was published on the IRRI website.

And this obituary (written by me) appeared in The Guardian on 5 July 2019.

The Times published an obituary on 28 August 2019 (No. 72937, page 48). Click on the image below to open or here to read a PDF version. It was also published online, but behind a paywall.

Also check this appreciation of John’s work and legacy that was published in Rice Today magazine in early 2010 not long after he retired from IRRI; click on the image below:


 

“A man who dares to waste one hour of time has not discovered the value of life”. Charles Darwin

It is clear from our recent visit to Down House in Kent, the Georgian manor that Charles and Emma Darwin called home for 40 years until his death in 1882, that Darwin certainly did discover the value of life.

Charles Darwin, naturalist and confirmed agnostic, turned the world upside down in 1859 with the publication of his seminal On the Origin of Species, published to great claim, and controversy. It was written at Down House as was much of his prolific output.

Born in Shrewsbury in 1809, the son of a doctor and successful businessman, Robert Darwin, he had two illustrious grandfathers: natural philosopher Erasmus Darwin, and potter Josiah Wedgwood, both anti-slavery abolitionists and members of the Lunar Society of Birmingham. Darwin never knew his grandfathers, as both passed away before his birth.

Coming from a wealthy background and supported by his father and the Wedgwoods, Darwin had no need to find other employment. He could concentrate on developing his theories and publishing his ideas. He did not have to sell many of his precious specimens as was often the case for many naturalists like Darwin’s ‘rival’ Alfred Russel Wallace, for example, to keep body and soul together. Many items of Darwin memorabilia are on display at Down House today.


Darwin married his first cousin Emma Wedgwood in January 1839, and over the next seventeen years had ten children. Moving from a cramped house in London in September 1842, Down House was the ideal location for the Darwins to raise their growing family, and for Darwin himself to have the space and tranquility to develop his theories on evolution and natural selection.

When they moved to Down House, the Darwin’s were already the proud parents of a son, William (b. 1839) and a daughter Anne (b. 1841). Another daughter, Mary was born at the time of the move, but lived for less than a month.  Their last child, Charles W. (b. 1856), died in infancy aged 18 months. Anne succumbed to tuberculosis in 1851.


Our visit to Down House was the first stop in a recent week-long break in the southeast. From home in northeast Worcestershire to Down House is a journey of 156 miles, under three hours by road, almost entirely on motorways (M42-M40-M25). Leaving the M25 at Junction 4, we took to the narrow lanes to cut across country to the Kent village of Downe.

 

Just four rooms are open to the public on the ground floor: Darwin’s Study (one can stand there in awe), the Dining Room (that Darwin, as a local Justice of the Peace, used as his court room), the Billiard Room, and the Parlour. No photography is permitted inside the house because all the items on display still belong to the Darwin family.

In the Dining Room there are two fine oil paintings of grandfather Erasmus. The porcelain on the dining table must surely be Wedgwood?

On the first floor (there’s no access to the upper floor) several rooms are filled with Darwin memorabilia, his journals, awards and the like. It’s a snapshot of Darwin’s life. One room was filled with wood engravings by Darwin’s granddaughter Gwen Raverat.

Another room, supposedly the Darwin’s bedroom, with a magnificent bow-window view over the garden, has been reconstructed by English Heritage, and photography is permitted there.


Down House has quite modest grounds, including an orchard. In the walled garden where Darwin conducted many of his experiments, the lean-to greenhouse has a small but fine collection of carnivorous plants and orchids.

At the far end of the garden, and parallel to the house and terrace, is the Sandwalk, a gravel path where Darwin (a creature of habit) would take a walk every day and work through all the ideas swirling around his mind. It’s not hard to imagine Darwin strolling along the Sandwalk.


As an evolutionary biologist who has worked on the variation in domesticated plants and in nature (addressed by Darwin in Chapters 1 and 2 of his On the Origin of Species) in potato and rice and their wild species relatives for much of my career, I had long been looking forward to this visit to Down House.

And I was both pleased and disappointed at the same time. It was incredible to see where Darwin had lived, and formulated one of the most important scientific theories ever, to see his journals and many other personal items, to learn something about his family and family life. Darwin often suffered from ill health, almost considered a hypochondriac. Now it’s thought that he may have been suffering from recurring bouts of Chagas disease that he picked up in South America during his voyage there on HMS Beagle.

On the other hand, I came away feeling that something had been missing. I didn’t feel much emotional connection to Down House as I have experienced in visits to other properties (such as Chartwell or Bateman’s, to mention just a couple). I know Darwin had lived in Down House. There was all the evidence in front of me. It just didn’t feel as though he had.

I mentioned that photography is not permitted inside Down House. Visitors are greeted at the entrance with a sign stating that photography is prohibited. Prohibited! Perhaps English Heritage could tone down the ‘request’. A more welcoming approach would be more appropriate.


Before visiting Down House, I decided to re-read On the Origin of Species, which I had first read many decades ago. I didn’t make good progress. It’s not that the subject matter is difficult. After all, Darwin’s ideas were ‘meat and potatoes’ to me during my working life. It’s just that Darwin’s style of writing is challenging, not helped by an extremely small font in the version I have. I’ll get there, eventually.

Everyone’s a taxonomist

I’ve just discovered (via Twitter) that 19 March was Taxonomist Appreciation Day. This was, as far as I can make out, a celebration of the important—fundamental even—contribution that biologists known as taxonomists make to our understanding of the living world. Taxonomists bring order to the biodiversity that’s all around us. Indeed, without this order and understanding, it would be more difficult to know for example which plants and animals are endangered, and to prioritize what to conserve, and where.

The most celebrated taxonomist of all was surely the eighteenth century Swedish botanist Carl von Linné (whose Latinized name, Linnaeus, identifies him as the taxonomic authority, L., for many plants and animals).

So what do taxonomists do? One of their important roles is to describe and catalogue all plants and animals and, in the case of plants, publish this information in compendia known as Floras as an aid to identification, like those written about the plants of the British Isles and Europe that have been studied for hundreds of years.

Other Floras are still being written. Take the Flora Zambesiaca, for example, a project started in 1960 as the taxonomic study of native and naturalised plants of the Zambezi River basin, covering the territories of Botswana, Malawi, Mozambique, Zambia, Zimbabwe and the Caprivi Strip. This is a work in progress, and there are many other parts of the world where the diversity of plants is only now being discovered and documented, particularly in the Tropics.

But taxonomists also look at the variation within species, and assess the dynamics of species distribution and evolution.


Mr Les Watson

I had my first taste of taxonomy at the University of Southampton where, as first year students or freshmen in 1967/68, we studied the diversity of flowering plants under the tuition of taxonomist Les Watson. He and another colleague Alan Myers took us to the west coast of Ireland for a field course in July 1968 where we studied the vegetation of the Burren in Co Clare.

Professor Vernon Heywood

In my final or senior year in 1970, I sat in on a plant taxonomy course given by eminent taxonomist Professor Vernon Heywood from the University of Reading (Les Watson had moved to Australia in 1968/69, and had not been replaced in the Department of Botany). I met up with Professor Heywood in 1991 at a conference in Rome where we had an opportunity to reminisce about that course.

I never expected that, one day, I would engage in taxonomic research. However, I never participated in describing or naming plant species, nor undertaking the enormous task of contributing to Floras that is sometimes considered the be-all and end-all of taxonomists’ work. I take my hat off to those taxonomists who write Floras, often relying on dried herbarium specimens of plants collected in nature. Nevertheless, in my own work, I have used herbaria on occasion, and twice spent time looking at specimens of lentil (Lens culinaris Medik.) and grasspea (Lathyrus sativus L.) among the millions of herbarium sheets curated in the Herbarium at the Royal Botanic Gardens at Kew. My interest was in the relationships of these cultivated plants and their wild relatives.

Comparing notes in the field in the Andes of central Peru with potato taxonomist Professor Jack Hawkes (who supervised my PhD dissertation).

In 1973 I joined the International Potato Center in Peru as an Associate Taxonomist, studying the evolution of cultivated potatoes. Biosystematics, a sub-discipline of plant taxonomy, was my field, and I investigated species relationships through field experiments to understand patterns of morphological variation, through breeding experiments, and cytogenetic analysis of chromosome pairing in hybrids, among other several different approaches.

When I returned to Birmingham in 1981 as Lecturer in Plant Biology, I continued research on wild potatoes, and also several legume species. I also contributed about half the lectures to a second year module on flowering plant taxonomy.

On moving to the International Rice Research Institute (IRRI) in the Philippines in July 1991, my colleagues and I delved into the taxonomy and species relationships of the two cultivated species of rice, Oryza sativa L. and O. glaberrima Steud., and the 20 or so wild species in the genus Oryza. We published quite extensively, and you you can peruse a list of rice publications (many with PDF files) here.


Just last week I met up for lunch with six retired former colleagues from the School of Biological Sciences at the University of Birmingham: three plant scientists (including me), three geneticists, and a zoologist. Inevitably we began to discuss not only the administrative and organization changes that had occurred at the university (I taught there between 1981 and 1991), but how the teaching of biology had also changed, and the topics that now form a core biology curriculum.

Back in the day, whole organism biology still formed an important component of an undergraduate degree in biological sciences at Birmingham. Nowadays, and for obvious reasons, there’s much more focus on molecular biology, and recent hirings in what is now the School of Biosciences (Biological Sciences and Biochemistry merged some years back) reflect that change of emphasis.

Alas, it’s no longer possible to study at Birmingham for a biology degree with a plant sciences focus. But that’s not just a Birmingham issue; it’s nationwide. And taxonomy is perhaps the discipline that has suffered more than most. Taxonomists are just not coming through the system. Just at the time when one can argue there should be more demand for taxonomists than ever before, given the environmental changes that threaten the world’s vegetation. In some regions we may be losing species even before they have been identified. Harvard biologist EO Wilson wrote this in 2017: Our incomplete taxonomic knowledge impedes our attempts to protect biodiversity. A renaissance in the classification of species and their interactions is needed to guide conservation prioritization [1].


Now, I started this piece stating that everyone is a taxonomist. Is that a fair assumption?I think so.

Appa Rao collecting upland rice varieties from a farmer in the Lao PDR.

Taxonomy (and classification) is a fundamental human characteristic, something we do every day. We sort the complex world around us into meaningful categories, and we give them names. In many societies, farmers and their husbands use so-called ‘folk taxonomies’ to manage the various crops grown, and often the diversity of different varieties within a crop. I have myself talked to potato farmers in the Andes of southern Peru about their cultivation of different varieties, and why these are grown in different ways. In the Lao PDR, with my colleague Dr Appa Rao, we looked at how farmers name all their rice varieties.

Even before talking to my second year students about flowering plant taxonomy as such (and the different approaches used to study variation), I asked them to practice some simple taxonomies on themselves: males vs. females, blondes vs. brunettes, spectacle users vs. non-users, for example. These are discrete characteristics, binary, one or the other. Then we’d look at the complexity of coping with characters that vary quantitatively, such as height, length, etc.

Fortunately, there are many numerical techniques that allow us to cope with all sorts of measurements, and reduce complexity to a state that can be interpreted more easily.

The classification of different rice species based on the measurement and analysis of a range of morphological characters.

The use of different molecular markers now allows us to refine taxonomies built using morphological data. But, as I once read in a letter published in a scientific journal, a professor of taxonomy decried the lack of basic species knowledge among many students using molecular approaches. They could wax lyrical, he stated, about the value of different molecular techniques, but they had hardly looked at a living plant. That brings me back to my concern about the reduction in teaching whole organism biology.

As I say, we are all taxonomists, one way or another. Unfortunately I don’t see any scientific expansion (in the UK at least) in this particular discipline.

The situation may be different in North America. Plant sciences are still very strong in many US universities, and indeed there is a bill before Congress that promotes botanical research & sciences capacity, generates demand for native plant materials, & authorizes related federal activities.


[1] Wilson, EO (2017). Biodiversity research requires more boots on the ground. Nature Ecology & Evolution 1, 1590 –1591