Discovering Vavilov, and building a career in plant genetic resources: (1) Starting out in South America in the 1970s

Nikolai Vavilov

Russian geneticist and plant breeder Nikolai Vavilov (1887-1943) is a hero of mine. He died, a Soviet prisoner, five years before I was born.

Until I began my graduate studies in the Department of Botany at the University of Birmingham in the conservation and use of plant genetic resources (i.e., crops and their wild relatives) almost 50 years ago in September 1970, his name was unknown to me. Nevertheless, Vavilov’s prodigious publications influenced the career I subsequently forged for myself in genetic conservation.

Jack Hawkes

At the same time I was equally influenced by my mentor and PhD supervisor Professor Jack Hawkes, at Birmingham, who met Vavilov in St Petersburg in 1938.

Vavilov undoubtedly laid the foundations for the discipline of genetic resources —the collection, conservation, evaluation, and use of plant genetic resources for food and agriculture (PGRFA). It’s not for nothing that he is widely regarded as the Father of Plant Genetic Resources.

Almost 76 years on from his death, we now understand much more about the genetic diversity of crops than we ever dreamed possible, even as recently as the turn of the Millennium, thanks to developments in molecular biology and genomics. The sequencing of crop genomes (which seems to get cheaper and easier by the day) opens up significant opportunities for not only understanding how diversity is distributed among crops and species, but how it functions and can be used to breed new crop varieties that will feed a growing world population struggling under the threat of environmental challenges such as climate change.

These tools were not available to Vavilov. He used his considerable intellect and powers of observation to understand the diversity of many crop species (and their wild relatives) that he and his associates collected around the world. Which student of genetic resources can fail to be impressed by Vavilov’s theories on the origins of crops and how they varied among regions.

In my own small way, I followed in Vavilov’s footsteps for the next 40 years. I can’t deny that I was fortunate. I was in the right place at the right time. I had some of the best connections. I met some of the leading lights such as Sir Otto Frankel, Erna Bennett, and Jack Harlan, to name just three. I became involved in genetic conservation just as the world was beginning to take notice.


Knowing of my ambition to work overseas (particularly in South America), Jack Hawkes had me in mind in early 1971 when asked by Dr Richard Sawyer, the first Director General of the International Potato Center (CIP, based in Lima, Peru) to propose someone to join the newly-founded center to curate the center’s collection of Andean potato varieties. This would be just a one-year appointment while a Peruvian scientist received MSc training at Birmingham. Once I completed the MSc training in the autumn of 1971, I had some of the expertise and skills needed for that task, but lacked practical experience. I was all set to get on the plane. However, my recruitment to CIP was delayed until January 1973 and I had, in the interim, commenced a PhD project.

I embarked on a career in international agricultural research for development almost by serendipity. One year became a lifetime. The conservation and use of plant genetic resources became the focus of my work in two international agricultural research centers (CIP and IRRI) of the Consultative Group on International Agricultural Research (CGIAR), and during the 1980s at the University of Birmingham.


My first interest were grain legumes (beans, peas, etc.), and I completed my MSc dissertation studying the diversity and origin of the lentil, Lens culinaris whose origin, in 1970, was largely speculation.

Trevor Williams

Trevor Williams, the MSc Course tutor, supervised my dissertation. He left Birmingham around 1977 to become the head of the International Board for Plant Genetic Resources (IBPGR) in Rome, that in turn became the International Plant Genetic Resources Institute (IPGRI), and continues today as Bioversity International.

Joe Smartt

I guess that interest in legume species had been sparked by Joe Smartt at the University of Southampton, who taught me genetics and encouraged me in the first instance to apply for a place to study at Birmingham in 1970.

But the cold reality (after I’d completed my MSc in the autumn of 1971) was that continuing on to a PhD on lentils was never going to be funded. So, when offered the opportunity to work in South America, I turned my allegiance to potatoes and, having just turned 24, joined CIP as Associate Taxonomist.

From the outset, it was agreed that my PhD research project, studying the diversity and origin, and breeding relationships of a group of triploid (with three sets of chromosomes) potato varieties that were known scientifically as Solanum x chaucha, would be my main contribution to the center’s research program. But (and this was no hardship) I also had to take time each year to travel round Peru and collect local varieties of potatoes to add to CIP’s germplasm collection.

I explored the northern departments of Ancash and La Libertad (with my colleague Zósimo Huamán) in May 1973, and Cajamarca (on my own with a driver) a year later. Each trip lasted almost a month. I don’t recall how many new samples these trips added to CIP’s growing germplasm collection, just a couple of hundred at most.

Collecting in Ancash with Zosimo Huaman in May 1973.

Collecting potatoes from a farmer in Cajamarca, northern Peru in May 1974 (L); and getting ready to ride off to a nearby village, just north of Cuzco, in February 1974 (R).

In February 1974, I spent a couple of weeks in the south of Peru, in the department of Puno, studying the dynamics of potato cultivation on terraces in the village of Cuyo-Cuyo.

Potato terraces at Cuyo Cuyo in Puno, southern Peru.

I made just one short trip with Jack Hawkes (and another CIP colleague, Juan Landeo) to collect wild potatoes in central Peru (Depts. of Cerro de Pasco, Huánuco, and Lima). It was fascinating to watch ‘the master’ at work. After all, Jack had been collecting wild potatoes the length of the Americas since 1939, and instinctively knew where to find them. Knowing their ecological preferences, he could almost ‘smell out’ each species.

With Jack Hawkes, collecting Solanum multidissectum in the central Andes north of Lima, early 1975.

My research (and Zósimo’s) contributed to a better understanding of potato diversity in the germplasm collection, and the identification of duplicate clones. During the 1980s the size of the collection maintained as tubers was reduced, while seeds (often referred to as true potato seed, or TPS) was collected for most samples.

Potato varieties (representative ‘morphotypes’) of Solanum x chaucha that formed part of my PhD study. L-R, first row: Duraznillo, Huayro, Garhuash Shuito, Puca Shuito, Yana Shuito L-R, second row: Komar Ñahuichi, Pishpita, Surimana, Piña, Manzana, Morhuarma L-R, third row: Tarmeña, Ccusi, Yuracc Incalo L-R, fourth row: Collo, Rucunag, Hayaparara, Rodeñas

Roger Rowe

Dr Roger Rowe was my department head at CIP, and he became my ‘local’ PhD co-supervisor. A maize geneticist by training, Roger joined CIP in July 1973 as Head of the Department of Breeding & Genetics. Immediately prior to joining CIP, he led the USDA’s Inter-Regional Potato Introduction Project IR-1(now National Research Support Program-6, NRSP-6) at the Potato Introduction Station in Sturgeon Bay, Wisconsin.

Although CIP’s headquarters is at La Molina on the eastern outskirts of Lima, much of my work was carried out in Huancayo, a six hour drive winding up through the Andes, where CIP established its highland field station. This is where we annually grew the potato collection.

Aerial view of the potato germplasm collection at the San Lorenzo station of CIP, near Huancayo in the Mantaro Valley, central Peru, in the mid-1970s.

During the main growing season, from about mid-November to late April  (coinciding with the seasonal rainfall), I’d spend much of every week in Huancayo, making crosses and evaluating different varieties for morphological variation. This is where I learned not only all the practical aspects of conservation of a vegetatively-propagated crop, and many of the phytosanitary implications therein, but I also learned how to grow a crop of potatoes. Then back in Lima, I studied the variation in tuber proteins using a tool called polyacrylamide gel electrophoresis (that, I guess, is hardly used any more) by separating these proteins across a gel concentration gradient, as shown diagrammatically in the so-called electrophoregrams below. Compared to what we can achieve today using a range of molecular markers, this technique was really rather crude.

Jack Hawkes visited CIP two or three times while I was working in Lima, and we would walk around the germplasm collection in Huancayo, discussing different aspects of my research, the potato varieties I was studying, and the results of the various crossing experiments.

With Jack Hawkes in the germplasm collection in Huancayo in January 1975 (L); and (R), discussing aspects of my research with Carlos Ochoa in a screenhouse at CIP in La Molina (in mid-1973).

I was also fortunate (although I realized it less at the time) to have another potato expert to hand: Professor Carlos Ochoa, who joined CIP (from the National Agrarian University across the road from CIP) as Head of Taxonomy.

Well, three years passed all too quickly, and by the end of May 1975, Steph and I were back in Birmingham for a few months while I wrote up and defended my dissertation. This was all done and dusted by the end of October that year, and the PhD was conferred at a congregation held at the university in December.

With Jack Hawkes (L) and Trevor Williams (R) after the degree congregation on 12 December 1975 at the University of Birmingham.

With that, the first chapter in my genetic resources career came to a close. But there was much more in store . . .


I remained with CIP for the next five years, but not in Lima. Richard Sawyer asked me to join the center’s Regional Research Program (formerly Outreach Program), initially as a post-doctoral fellow, the first to be based outside headquarters. Thus, in April 1976 (only 27 years old) I was posted to Turrialba, Costa Rica (based at a regional research center, CATIE) to set up a research project aimed at adapting potatoes to warm, humid conditions of the tropics. A year later I was asked to lead the regional program that covered Mexico, Central America, and the Caribbean.

CATIE had its own germplasm collections, and just after I arrived there, a German-funded project, headed by Costarrican scientist Dr Jorge León, was initiated to strengthen the ongoing work on cacao, coffee, and pejibaye or peach palm, and other species. Among the young scientists assigned to that project was Jan Engels, who later moved to Bioversity International in Rome (formerly IBPGR, then IPGRI), with whom I have remained in contact all these years and published together. So although I was not directly involved in genetic conservation at this time, I still had the opportunity to observe, discuss and learn about crops that had been beyond my immediate experience.

It wasn’t long before my own work took a dramatically different turn. In July 1977, in the process of evaluating around 100 potato varieties and clones (from a collection maintained in Toluca, Mexico) for heat adaptation (no potatoes had ever been grown in Turrialba before), my potato plots were affected by an insidious disease called bacterial wilt (caused by the pathogen Ralstonia solanacearum).

(L) Potato plants showing typical symptoms of bacterial wilt. (R) An infected tuber exuding the bacterium in its vascular system.

Turrialba soon became a ‘hot spot’ for evaluating potato germplasm for resistance against bacterial disease, and this and some agronomic aspects of bacterial wilt control became the focus of much of my research over the next four years. I earlier wrote about this work in more detail.

This bacterial wilt work gave me a good grounding in how to carefully evaluate germplasm, and we went on to look at resistance to late blight disease (caused by the fungus Phytophthora infestans – the pathogen that caused the Irish Potato Famine of the 1840s, and which continues to be a scourge of potato production worldwide), and the viruses PVX, PVY, and PLRV.

One of the most satisfying aspects of my work at this time was the development and testing of rapid multiplication techniques, so important to bulk up healthy seed of this crop.

My good friend and seed production specialist colleague Jim Bryan spent a year with me in Costa Rica on this project.

Throughout this period I was, of course, working more on the production side, learning about the issues that farmers, especially small farmers, face on a daily basis. It gave me an appreciation of how the effective use of genetic resources can raise the welfare of farmers and their families through the release of higher productivity varieties, among others.

I suppose one activity that particularly helped me to hone my management skills was the setting up of PRECODEPA in 1978, a regional cooperative potato project involving six countries, from Mexico to Panama and the Dominican Republic. Funded by the Swiss, I had to coordinate and support research and production activities in a range of national agricultural research institutes. It was, I believe, the first consortium set up in the CGIAR, and became a model for other centers to follow.

I should add that PRECODEPA went from strength to strength. It continued for at least 25 years, funded throughout by the Swiss, and expanding to include other countries in Central America and the Caribbean.

However, by the end of 1980 I felt that I had personally achieved in Costa Rica and the region as much as I had hoped for and could be expected; it was time for someone else to take the reins. In any case, I was looking for a new challenge, and moved back to Lima (38 years ago today) to discuss options with CIP management.

It seemed I would be headed for pastures new, the southern cone of South America perhaps, even the Far East in the Philippines. But fate stepped in, and at the end of March 1981, Steph, daughter Hannah (almost three) and I were on our way back to the UK. To Birmingham in fact, where I had accepted a Lectureship in the Department of Plant Biology.


The subsequent decade at Birmingham opened up a whole new set of genetic resources opportunities . . .


 

 

Three score and ten . . .

18 November 1948. Today is my 70th birthday. Septuagenarian. The Biblical three score and ten (Psalm 90:10)!

Steph and I have come away for the weekend to celebrate my birthday with The Beatles in Liverpool.

We are staying for a couple of nights at Jurys Inn close to the Albert Dock. Later this morning we’ve booked to visit the National Trust-owned Beatles’ Childhood Homes (of John Lennon and Paul McCartney). And after lunch, we will tour The Beatles Story where I’m hoping to see, displayed there, something special from my childhood.

How the years have flown by. Just a month ago, Steph and I celebrated our 45th wedding anniversary. And I find it hard to believe that I started university over 50 years ago.

That got me thinking. I’ve written quite a lot in this blog about the years after I graduated, my time working overseas, about travel, and what Steph and I have been up to since retiring in 2010.

However, I written much less about my early years growing up in Cheshire and Staffordshire. This is then an appropriate moment to fill some gaps.

A son of Cheshire
I was born in Knowlton House nursing home in Congleton, Cheshire (map), third son and fourth and youngest child of Frederick Harry Jackson (aged 40), a photo process engraver, and Lilian May Jackson, also aged 40, housewife.

Mum and Dad, around 1959/60 after we had moved to Leek

My eldest brother Martin has been able to trace our family’s ancestry (mainly on my father’s side) back to someone named Bull, who was my 13th great-grandfather, born around 1480 on the Staffordshire/ Derbyshire border, just one of my 32,000 plus direct ancestors then. I must be related to royalty in one way or another (as are most of us), although looking at the occupations noted for many of them in various official documents (birth and marriage certificates, census data), we came a long way down the pecking order. Definitely below the salt! We’re Irish on my mother’s side of the family.

A punk before it was fashionable!

I am also a child of the National Health Service (NHS) that was founded in July 1948. In fact, I’m (approximately) the 190,063rd baby born under the NHS!

Knowlton House on Parson Street in Congleton – it’s no longer a nursing home.

I wonder who assisted at my birth? It could well have been our family Dr Galbraith, or Nurses Frost and Botting.

Dr Galbraith (R) was our family doctor, who (with his partner Dr Ritchie) often attended births at Knowlton House, and is seen here with resident midwife Nurse Rose Hannah Frost, who assisted at more than 3000 births. There is a very good chance either Nurse Frost or Nurse May Botting (who ran the nursing home) assisted at my birth. In this photo from 1936, Dr Galbraith and Nurse Frost are holding the Nixon triplets. Photo courtesy of Alan Nixon, who was apparently named after Dr Galbraith.

My dad registered my birth¹ on 22 November (Entry No. 442). There are few ‘Michaels’ in the family; Thomas is my paternal grandfather’s name.

My eldest brother Martin was born in September 1939, just a couple of days before war was declared on Germany. My sister Margaret was born in January 1941. Martin and Margaret spent much of WWII with my paternal grandparents in rural Derbyshire. My elder brother Edgar (‘Ed’) is, like me, one of the baby boomer generation, born in July 1946.

The difference of around 55 years – 1951/52 and 2006

I’ve often wondered what sacrifices Mum and Dad had to make to give us all such a good start in life.

Growing up in Congleton, we lived at 13 Moody Street, close to the town center’s High Street.

There’s not much to tell about my first couple of years, other than what I can surmise from a few photographs taken around that time when I was still in my pram or just beginning to walk. Two things I do remember clearly, though. The hens my father used to keep, and even the large henhouse he constructed at the bottom of the garden. And our female cat, Mitten, and all her kittens. That must have been the start of becoming an ailurophile (cat lover).

My best friend was Alan Brennan, a year younger, who lived a little further up Moody Street at No. 23 (and with whom I reconnected through this blog, after a gap of around 60 years!).

With Alan and his parents (and friends) at Timbersbrook, in 1955. I clearly remember Mr Brennan’s Vauxhall car – a Wyvern I believe.

We didn’t go to the same primary school. Like my brothers and sister before me, I was enrolled (in September 1952 or April 1953, maybe as late as September 1953) at the small Church of England school on Leek Road in Mossley, south of the town. By then, Martin had moved on to grammar school in Macclesfield; Margaret had also transferred to secondary school in Congleton.

Each morning, Ed and I would catch the bus in the High Street together for the short, 1½ mile ride to Mossley. And even as young as five, I would sometimes walk home alone from school during the summer months, along Leek Road and Canal Road/Street. How times change!

I remember the headteacher, Mr Morris, as a kind person. My class teachers were Mrs Bickerton (on the left) and Mrs Johnson (on the right). Courtesy of Liz Campion.

There was a real community of children around Moody Street, Howie Lane/Hill, and Priesty Fields. In summer, we’d all wander up to play on the swing bridge over the Macclesfield Canal (beyond the cemetery – where we would also play in a WWII air raid shelter). The bridge has long been replaced, but from comments on a Congleton Facebook group I belong to, it seems that over the generations, many children enjoyed the swing bridge as much as we did.

In winter, we had fun in the snow at Priesty Fields just round the corner from Moody St. And, as you can see below, we enjoyed dressing up. Happy days!

In the upper image, taken on Coronation Day in 1953, I’m fifth from the right (carrying the stick). Alan Brennan is the little by to the left of the ‘clown’, and in front of the ‘pirate’, my elder brother Ed. The lower image was taken on May Day, probably 1953 or 54. I’m on the left, carrying the sword, uncertain whether to be a knight or a cowboy.

c. 1955. L-R: Veronica George, Carol Brennan, Jessica George, my elder brother Ed, me, Margaret Moulton, and Alan Brennan. Taken in the garden of No 13 Moody St. The George sisters lived at No. 21 Moody St.

I often joined my father when he went out on photographic assignments for the Congleton Chronicle (where he was Chief Photographer), often to Biddulph Grange when it was an orthopedic hospital, also to Astbury, and out into the beautiful Cheshire countryside.

I remember one outing in particular, to Little Moreton Hall in May 1954. This is my father’s photo of Manley Morris Men dancing there, an image that stuck in my mind for many years. So much so that when I went to university in the later 1960s, I helped form a morris dancing side, the Red Stags, that’s still going strong (albeit in a slightly different form) 50 years later.

The Manley Morris Men at Little Moreton Hall on 8 May 1954.

For family holidays I remember those in North Wales, at a caravan park or, on one occasion, a camping coach, a converted railway carriage alongside the mainline to Holyhead next to the beach at Abergele.

During these early years, until July 1954, rationing was still in place that had come into effect at the start of the Second World War. I often wonder how my parents managed to raise four children during these difficult years. One thing I do recall, however, is how we shared things, particularly confectionery. No individual treats. My father would buy a Mars bar (I’m sure they were bigger then) and cut it into six pieces. Funny how these things stick in one’s memory.


The move to Leek
April 1956. A big change in my life. My family upped sticks and moved 12 miles southeast to the market town of Leek in north Staffordshire, where my father took over a retail photography business. As I was only 7½ when we moved, I’ve come to regard Leek as my home town. My parents lived there for the rest of their lives. My father passed away in 1980, and after my mother had a stroke in 1990, only then did she move away from Leek to spend her last couple of years in a care home near my sister in South Wales.

We lived at No. 65, St Edward Street, and within a couple of days of arriving there, I’d made friends with three boys who lived close by: Philip Porter (next door), Geoff Sharratt – whose father was publican at The Quiet Woman pub a few doors away, and David Phillips who lived over the road. Geoff’s younger sister Susan sometimes joined in our games, as did Philip’s sister Jill. We were the ‘St Edward Street Gang’.

Here we are in the late 1950s (probably 1958), in the yard of The Quiet Woman pub. L-R: Sue, Geoff, me, Philip, and Dave. And again in 2018.

Geoff was my best friend, and we spent a lot of time playing together. There were several upstairs rooms at The Quiet Woman, one of which was the Lodge of the Royal Antediluvian Order of Buffaloes (RAOB, the Buffs, a fraternal organization somewhat similar to the Freemasons). During inclement weather, we often took refuge in the Lodge, playing among the benches and high chairs.

Playing with my Hornby ‘O’ gauge clockwork train at ‘Congleton’ station – it would be a collectors’ item today. Taken around 1958.

I was also a cub scout, as was Ed.

Around 1960, the lease on No. 65 came due, so my father decided to to find a better location for his business. First, he moved across St Edward’s St to No. 56 (while we lived in a flat at the top of the Market Place). In 1962/63 my father acquired No. 19 Market Place as premises for his photographic business, with living accommodation above. This was just what he had been looking for, centrally located in the town, lots of footfall. But the whole property had to be refurbished; there was only one water tap – in the cellar. He did much of the refurbishment himself. I’ve never ceased to be amazed at his DIY talents, something I sadly have not inherited to the same degree. My parents remained at No. 19 until they retired in 1976.

Sandwiched between Jackson the Optician (no relation) on the left, and Victoria Wine on the right, No 19 Market Place was my parents home for 14 years.

Around the same time, Geoff’s parents left The Quiet Woman and moved elsewhere in the town. I was also traveling every day to school to Trent Vale on the south side of Stoke-on-Trent (a round trip of about 28 miles), while Geoff continued his education in Leek. As a consequence, we drifted apart, but through my blog we reconnected in 2012.

Mr Smith

My mother’s family were Irish Catholics, and although we had not been brought up in the faith while in Congleton, both Ed and myself were enrolled in St. Mary’s RC primary school on Cruso Street, a short walk away from home. We were taught by Sisters of Loreto nuns. Headmistress Mother Elizabeth or my class teacher, Mother Bernadine, were never averse to wrapping us across the knuckles with the sharp edge of a ruler. In my final year at St Mary’s (1959-60), we were taught by Mr Smith. But my recollections don’t tally so much with many others who also attended St Mary’s. And I have been horrified at some accounts of how unhappy they were at the school in the 1950s and 60s.

In the late 50s and early 60s, just Ed and I would join our parents for holidays in Wales, most often camping or in our own caravan.

Some of my happiest memories though come from our visits to my grandparents² (my father’s parents) in Hollington, a small Derbyshire village between Ashbourne and Derby. My grandfather was almost 76 when I was born; Grandma was 68.

Family picnic at Hollington, c. 1952, with cousins. Grandma in the center, my mum is on the left. I’m center front ‘guarding’ the bottle.

With Grandad and Grandma Jackson, and our cousin Diana, c. 1959 at Ebenezer Cottage.

Grandma and Grandad celebrated their Golden Wedding in 1954, the occasion of a large gathering of family and friends in Hollington.


Enduring high school
I passed my 11 Plus exam to attend a Roman Catholic grammar school, St Joseph’s College, at Trent Vale on the south side of Stoke-on-Trent. Founded by Irish Christian Brothers in 1932, the school took boys only (but is now co-educational). I had to be on the bus by 07:50 each morning if I was to get to school by 09:00. This was my daily routine for the next seven years.

On reflection, I can’t say that I found the school experience satisfying or that the quality of the education I received was worth writing home about. Yes, there were some good teachers who I looked up to, but much of the teaching was pretty mediocre. I’ve written elsewhere about the gratuitous use of corporal punishment at the school.

Perhaps one of the school’s claims to fame was the priest who attended to our ‘spiritual needs’. He was Father John Tolkien, son JRR Tolkien, the author of Lord of the Rings and The Hobbit. My first impressions of Fr Tolkien were not favorable. He came across as cold and authoritarian. When I got to know him later on, however, I found he was a warm person with a good sense of humor. I was saddened to learn that his last years were blighted by accusations of abuse, later dropped.


On to university . . . and faraway places
I was lucky to secure a place in October 1967 at the University of Southampton to study botany and geography, beginning three of the happiest years of my life. I’ve already blogged about various aspects of my time at Southampton, and you can read them here. Little did I think that I would have a career in botany, and that would lead me to fulfill one of my ambitions: to visit Peru.

Even though I graduated in 1970 with only an average BSc degree, that didn’t hold me back. I had ambitions.

I was fortunate to be accepted into graduate school at the University of Birmingham, where I completed MSc and PhD degrees in plant genetic resources, and returned there in 1981 for a decade as Lecturer in Plant Biology.

After my PhD graduation at The University of Birmingham on 12 December 1975 with my PhD supervisor, Prof. Jack Hawkes (L) and Prof. Trevor Williams (R) who supervised my MSc dissertation.

My international career in plant genetic resources conservation and agriculture took me to Peru and Costa Rica from 1973-1981, to work on potatoes for the International Potato Center (CIP). And then in July 1991, I moved to the Philippines to join the International Rice Research Institute (IRRI) for the next 19 years as head of the genebank then as Director for Program Planning and Communications.

I had good opportunities to publish my research over the years, in terms of journal articles, books and book chapters, and presentations at scientific conferences.

I retired in April 2010, at the age of 61. But I haven’t rested on my laurels. Scientifically I have:

In the 2012 I was honored to be made an Officer of the Most Excellent Order of the British Empire, or OBE, for services to international food science (in the New Year’s Honours).

I set up this blog in February 2012, and have written more than 460 stories for a total of around 470,000 words since then, and posted thousands of images, most of which I have taken myself.


Family
Steph and I were married on 13 October 1973 in Lima, Peru. We’d met at Birmingham during 1971-72, and after I’d moved to Lima in January 1973, she joined me there in July and also worked at CIP.

At La Granja Azul restaurant near Lima (on the left) after our wedding in 1973. And on the right, exactly 45 years later during one of our walks at Croome Court in Worcestershire.

Hannah, our elder daughter was born in Costa Rica in April 1978. Philippa was born in Bromsgrove in May 1982, a year after we had moved back to the UK (in March 1981). When we moved to the Philippines in 1991, they both attended the International School Manila, and then went on to university in the USA (Macalester College in Minnesota) and Durham in the UK, respectively. In 2006 and 2010, they completed their PhD degrees in psychology, respectively at the University of Minnesota and Northumbria University.

PhD graduands! On the left, Hannah is with her classmates in Industrial-Organizational Psychology at the University of Minnesota, Emily and Mike, on 12 May 2006. Philippa (on the right) is with one of her PhD supervisors, Prof. David Kennedy of the Brain, Performance and Nutrition Research Centre in the Dept. of Psychology at Northumbria University on 7 December 2010.

In those same years Hannah married Michael, and Phil married Andi. We now have four wonderful grandchildren: Callum (8), Elvis (7), Zoë (6), and Felix (5). The family came together for the first time in a New Forest holiday in July 2016.

On holiday in the New Forest in July 2016. L-R (sitting): Callum, Hannah, Zoë, me, Steph, Elvis, Felix, and Philippa. Standing: Michael and Andi

The 2018-19 school year started for Callum and Zoë in August, and for Elvis and Felix in September. It was also Felix’s first day at school.

In September, Steph and I spent a week in Cornwall exploring many National Trust and English Heritage properties around the county.

Foldes and Fenner family photos in July and September


So, as I look back on the past 70 years, I can’t say I have much to complain about. Steph and I have a beautiful family. An interesting career took me to more than 65 countries (and Steph to some of those). We’ve lived and worked in three countries and made some wonderful friends.

Je ne regrette rien

At 70, though, what does life have in store?

I think Fleetwood Mac (one of my favorite bands) sum it up quite nicely. If it was fine for Bill Clinton, it’s good enough for me.

Retirement is sweet. Who could ask for more?


¹ I no longer have my original birth certificate. That now sits in an archive somewhere in the Miraflores Municipality building in Lima, Peru. When Steph and I married there in October 1973 we had to present our original birth certificates, not realizing these would be filed away in perpetuity and never returned to us.

² I did not really know my mother’s parents, who died before my sixth birthday. They lived in Epsom, Surrey.

Gelia Castillo – a synthesis tour de force

I was searching YouTube the other day for videos about the recent 5th International Rice Congress held in Singapore, when I came across several on the IRRI channel about a long-time friend and former colleague, Professor Gelia Castillo, who passed away in August 2017 at the age of 89¹.

Gelia was a distinguished rural sociologist, emeritus professor at the University of the Philippines-Los Baños (UPLB) and, since 1999, a National Scientist of the Philippines, the highest honor that can be bestowed on any scientist.

I’m proud to have counted her among my friends.

I’d known Gelia since the late 1970s when she joined the Board of Trustees of the International Potato Center (CIP) in Lima, Peru, the first woman board member and, if memory serves me correctly, one of the first women to serve on any board among the CGIAR centers when they were dominated by white Caucasian males (a situation that no longer obtains, thankfully).

The CGIAR centers in 2018 (from CIAT Annual Report 2017-2018).

I know that Gelia went to serve on the board of the International Plant Genetic Resources Institute (now Bioversity International) based in Rome, and other boards inside and outside the CGIAR.

I was a young scientist, in my late 20s, working for CIP in Costa Rica (and throughout Central America) when Gelia joined the center’s board, bringing (as she did everywhere she went) a welcome breath of fresh air—and a clarity of independent thinking—that categorized all her intellectual contributions. She influenced policymakers in government, international development circles, and academe, [and] pioneered the concept of participatory development.

Gelia was born into a poor family in Pagsanjan in Laguna Province, just 31 km east of Los Baños, the city² where she spent her entire academic career. She completed her graduate studies in the United States with MS (1953) and PhD (1960) degrees in rural sociology from Penn State and Cornell, respectively. She retired from UPLB in 1993, a couple of years after I landed in the Philippines, when we renewed our friendship after more than a decade.

But retirement did not mean slowing down. Besides her international board commitments, Gelia became ‘synthesizer-in-chief’ at IRRI, an honorary role through which she attended institute seminars and science reviews. She was also a valued adviser to successive Directors General. Let Gelia herself explain.

Gelia kept us honest! Why do I say this? She had an uncanny ability always to see the broader picture and bring together quite different perspectives to bear on the topic in hand. She herself admitted that, early in her career, she decided to concentrate on ‘synthesis’, an academic and intellectual focus and a skill (gift almost) that few manage to harness successfully. It wasn’t just her social sciences training.

In developing a research strategy and plan, any organization like IRRI needs skilled and dedicated researchers. But often, because each is deeply involved in his or her own projects, they find it hard to see (often necessary) links with other disciplines and research outcomes. Gelia was able to extract the essence of the institute’s research achievements and pull it together, mostly with approval but sometimes with justified criticism. Given her expertise in participatory research, working with poor families in rural areas (the ‘clients, as it were, of IRRI’s research and products), and promoting gender studies, Gelia could, almost at the drop of a hat, deliver a succinct synthesis of everything she had listened to, and provide suggestions for future directions. After a week of intense annual science review presentations and discussions, Gelia would be called upon, at the end of the final afternoon, to deliver her synthesis. Here she is, at the IRRI science review in 2010.

And almost without fail, she could hit the mark; and while she could be critical, never were criticisms aimed at individuals. Her analysis never became personal. I’m sure her wise words are sorely missed at IRRI.

Permit me to finish with a personal recollection. I retired from IRRI in April 2010 and, in subsequent years, I only saw her a couple of times, later that same year and in August 2014, when I was organizing the 3rd and 4th International Rice Congresses, and had to visit IRRI in that capacity.

Sharing cake and reminiscences with Gelia (in the DPPC office) on my last day at IRRI, 30 April 2010.

But just before I retired, in March 2010, I delivered my ‘exit’ seminar: Potatoes, pulses and rice – a 40 year adventure, a synthesis of my career in international agricultural research and academia. It must have struck a chord with Gelia. Because after it was all over, she came up to me, took me by the hand, and planted a large kiss on my cheek. That was praise indeed! A memory I cherish.


¹ Written by my friend and former colleague, Gene Hettel (who had been Head of IRRI’s Communication & Publication Services), IRRI published this obituary shortly after her death. There you will also find links to the speeches at her memorial service.

² In 2000, under Presidential Proclamation Order No. 349, the Municipality of Los Baños was designated and declared a Special Science and Nature City of the Philippines.

In perpetuity . . . or longer (updated 17 October 2018)

The airwaves yesterday were full of the news¹ about the secure, in perpetuity funding that the Crop Trust has awarded (annually USD1.4 million) to support the operations of the International Rice Genebank at the International Rice Research Institute (IRRI), based in Los Baños, Philippines. The genebank conserves the largest and most genetically diverse collection of rice genetic resources that is the genetic base of rice improvement programs worldwide. It’s the first genebank to receive this sort of funding commitment.

In perpetuity! Forever! That’s a long time. In some ways, of course, it’s not a completely open-ended commitment. The agreement (to be signed on World Food Day, 16 October², during the 5th International Rice Congress in Singapore) will, I understand, be subject to five-year reviews, and the development of a business plan that will guide how, where and what will get done. That plan must inevitably evolve over time, as new technologies not only enhance how rice seeds can be better preserved but also how they can be used in rice improvement. Not that I can see IRRI screwing up and losing the funding. That behavior is not in the institutional DNA!

The collection holds more than 130,000 seed samples or accessions of landrace varieties, wild species, and other research materials, among others. You can check the status of the IRRI collection (and many more genebanks in the Genesys database).

My congratulations to Genebank Head and compatriot, Ruaraidh Sackville Hamilton and his key genebank lieutenants, Genebank Manager Flora ‘Pola’ de Guzman and Sr Associate Scientist Renato ‘Ato’ Reaño, for guiding the genebank to this happy state.

It has been a long journey, almost 60 years, from 1960 when IRRI was founded and Dr TT Chang (the first head of the genebank) began to assemble a collection of rice varieties that soon became the International Rice Germplasm Center (IRGC).

L-R: Dr TT Chang was head of the International Rice Germplasm Center from 1962-1990; Mike Jackson served as Head of the Genetic Resources Center (here with Nobel Peace Prize Laureate Dr Norman Borlaug) from 1991-2001; and Dr Ruaraidh Sackville Hamilton joined IRRI in 2002.

There was a significant change of direction, so to speak, to the genebank and its operations in 1991 after my appointment as Head of the newly-created Genetic Resources Center (the IRGC acronym was subsequently changed to International Rice Genebank Collection) with a mandate to rationalize and upgrade the genebank’s operations. I held that position for the next decade before moving on to the institute’s senior management team as Director for Program Planning & Communications in 2001. Ruaraidh joined IRRI in 2002 and has been at the helm ever since.

In other stories posted on this blog I have described what it entails to run a genebank for rice, and some of the important changes we made to modernize genebank management and operations, especially how they were impacted with respect to the institute’s international obligations to FAO and subsequently under the International Treaty on Plant Genetic Resources for Food and Agriculture.

In 2015 I made my own video to illustrate many of the different operations of the genebank, some of which have been modified in the light of new research concerning the handling of rice seeds post-harvest. Nevertheless, the video reflects the changes I introduced during my tenure as head of the International Rice Genebank, many of which still prevail.

Ruaraidh built upon the changes I introduced, bar-coding all samples for example, and linking the collection with others in the CGIAR through the Genebank Platform. There have been further improvements to how data about the collection are managed, and seed management was enhanced through the research of former employee and seed physiologist Dr Fiona Hay and her PhD student Kath (now Dr) Whitehouse.

Ruaraidh has also successfully steered IRRI and its genetic resources through the turbulent currents of international germplasm politics that culminated in the entering into force of the International Treaty in June 2004, and the subsequent negotiations over access and benefit sharing. I can’t deny I was quite happy to leave these ‘political’ aspects behind when I left GRC in 2001. Management and use of genetic resources in the 1990s were increasingly affected by the various negotiations that affected access to and sharing of biodiversity after the Convention on Biological Diversity (CBD) came into force in December 1993. To some extent they were a distraction (but an important one) from the technical aspects of rice genetic resources that I tackling.

It’s quite humbling that for generations to come, I will have been a part of securing the genetic heritage of rice. Besides making the necessary technical changes to genebank structure and operations in the 1990s, I’m particularly proud of the personnel structures I introduced. These permitted staff to really fulfill their potential.

I quickly recognized that Pola should be placed in the role of Genebank Manger, and Ato given responsibility for all field operations. We built a team that believed in a culture of mutual support.

Ken McNally

Another aspect was the recognition, way back in 1998, of the power of genomics and molecular genetics to unravel the secrets of rice diversity. To that end I had organized an international workshop in The Hague in September 1999, which is described about two-thirds through this blog post. I was fortunate to hire Dr Ken McNally as a molecular geneticist in this respect, and he has taken the study of rice genetic diversity to another level, supported by someone who I believed in from my early days at IRRI, Dr Elizabeth Naredo.

But the genebank is also facing some changes. Ruaraidh is expected to retire in the near future, and Pola and Ato can’t be far off retirement. No-one is irreplaceable, but they will be a hard act to follow. Finding individuals with the same breadth of experience, commitment to genetic resources conservation, and work ethic will certainly be a challenge. Other staff from my era have already retired; the genebank did not fall apart. With this secure funding from the Crop Trust the genebank can, for the first time in its 60 year history, set itself on a trajectory into the future in a way that was always uncertain in the past (because of year-to-year funding), but always the Holy Grail of genetic resources conservation.

I also hope that IRRI will step up to the plate and secure other funds to build a completely new genebank appropriate for the 21st century. After all, the facilities I ‘inherited’ from TT Chang are approaching 40-50 years, and even those I improved are 25 years old. Relieving the institute of the genebank annual operating budget should open up other opportunities.

Congratulations to IRRI, and on behalf of the genetic resources community (especially those depending on rice) a big thank you to the Crop Trust!


¹ BBC, Nature, and New Food Magazine, among others.

² My friend and former IRRI colleague, Gene Hettel, kindly sent me some photos and videos from yesterday’s signing ceremony in Singapore between IRRI and the Crop Trust.

Crop Trust Executive Director Marie Haga and IRRI Director General Matthew Morell sign the agreement assuring in perpetuity funding for the International Rice Genebank.

Head of the genebank Ruaraidh Sackville Hamilton speaking after the signing of the agreement. On the left is Charlotte Lusty, Head of Programs and Genebank Platform Coordinator at the Crop Trust.

One very nice touch during the ceremony was the recognition of Pola de Guzman’s 40 years dedicated service to genetic conservation at IRRI.

Well done, Pola!

 

 

Whither the grasspea?

Would you knowingly eat something that could harm you? That’s the dilemma facing millions of poor, subsistence farmers and their families from time to time, especially in India, Bangladesh, and Ethiopia, when the alternative is not eating anything at all. Famine.

From the beginnings of agriculture and earlier, 10,000 or more years ago, farmers have cultivated and consumed in times of adversity, the seeds of a plant known scientifically as Lathyrus sativus L.¹ Or, more commonly, the grasspea. It’s also an important fodder crop for livestock.

On the plus side, grasspea has a good protein profile and, as a legume, it supplies nitrogen to the soil through its root nodules. Its particular agricultural value is that it can be grown in times of drought, as well as when the land is flooded. It’s the ultimate insurance crop for poor, subsistence farmers.

Yet, it holds a deadly secret. β-ODAP. Or more precisely, β-L-oxalyl-2,3-diaminopropionic acid to give its full name, an amino acid that is also a neurotoxin responsible for the condition known as lathyrism, a non-reversible paralysis. No wonder, then, that its cultivation is banned in some Indian states. In the past, its consumption has also had severe consequences in Europe.

‘Gracias a la Almorta’ or ‘Thanks to the Grasspea’ by Francisco de Goya (painted between 1811 and 1813), painted during the Spanish War of Independence, when poor people turned to eating grasspea, and suffered paralysis from lathyrism. However, on the British Museum website it suggests grain (millet) rather than ‘grasspea’, and no mention of lathyrism. ‘Almorta’ is a Spanish word for grasspea.

Yet, when needs must, poor farmers turn to the grasspea when there is nothing else to eat because drought or floods have wiped out other crops.

So what’s being done to overcome the grasspea’s downside? Fortunately, an international collaborative research effort (funded by the UK Government’s Global Challenges Research Fund), Unlocking the Potential of Grass pea for Resilient Agriculture in Drought Prone Environments (UPGRADE), aims to breed ‘sweet’ varieties of grasspea with a low content of the neurotoxin.

I learned about this project yesterday evening when I happened to tune into BBC Radio 4’s Inside Science (you can listen from about 11′ 20″ into the program). The John Innes Centre in the UK is one of the project members, and in Prof. Cathie Martin‘s lab, Dr Anne Edwards is screening about 500 different grasspea lines, testing them for β-ODAP content, and also introgressing the lower content trait into different genetic backgrounds, for future testing in the field.

I was fascinated to hear how this international collaboration was making progress towards defeating the scourge of lathyrism, as I’d also worked on grasspea almost 40 years ago. But from a crop evolution and genetic resources point of view.

When I returned to The University of Birmingham in 1981, I decided to start a small research project on grasspea, looking at the diversity and broader genetic resources of this important but somewhat neglected crop, in addition to continuing my research on potatoes.

In 1981, one of the students attending the one-year MSc Course on Conservation and Utilization of Plant Genetic Resources was Abdul bin Ghani Yunus from Malaysia. He worked on his dissertation project under my supervision, to study the diversity of grasspea. I already had assembled a collection of grasspea varieties from different sources around the world including the Vavilov Institute in St Petersburg, so Ghani had quite a stock of varieties to work with.

His dissertation led to one scientific paper, Variation in the grasspea, Lathyrus sativus L. and wild species, published in the journal Euphytica in 1984. There were two principal conclusions:

  • L. sativus is a highly variable species, and there is a clear distinction between the blue-flowered forms from south-west Asia, Ethiopia and the Indian subcontinent, and the white and white and blue flowered forms with white seeds which have a more westerly distribution. Differences in vegetative parts may be due to selection for forage types.
  • L. sativus appears to be closely related to L. cicera and L. gorgoni, and this relationship needs further investigation.

Ghani returned to Malaysia in 1982 to continue his research and teaching at the University of Agriculture, Selangor and I heard little from him, until about 1986. Then, he contacted me again, asking about the possibilities of returning to Birmingham to complete a PhD under my supervision. He wanted to work on a tropical species from Malaysia. But since he did not envision spending time back in Malaysia during his PhD program, I explained that working on this species (I don’t now remember what it was) was not feasible, since we wouldn’t be able to grow it successfully in the glasshouse at Birmingham. After all, it wasn’t the species per se that was the most important aspect for his PhD; it would be the focus, the scientific methods and approaches he would learn and employ that were more important.

I convinced him to continue his work on Lathyrus, but broadening its scope to study the biosystematics or biological relationships of the grasspea with the species considered to be its closest relatives. In that way we anticipated better defining the genetic resources or gene pools of the grasspea (an essential prerequisite if, at some time in the future, a breeding program was set up that needed to exploit more diversity), as well as trying to shed some light on the origin of this neglected food crop.

In 1990, Ghani successfully presented his PhD thesis, Biosystematics of Lathyrus Section Lathyrus with special reference to the grass pea, L. sativus L., leading to two more useful scientific papers that have been widely cited:

  • The genepools of the grasspea, Lathyrus sativus L., in Plant Breeding (1991). This research concerned the cross-breeding relationships of the grasspea and its closest relatives, based on experimental pollinations, pollen tube growth microscopy, and chromosome pairing, confirming one of our earlier hypotheses about L. cicera.
  • Phenotypic polymorphism of six isozymes in the grasspea (Lathyrus sativus L.), in Euphytica (1991). Ghani concluded that there was more genetic variation than perhaps expected in this self-pollinating species, and we discussed the implications of exploiting this diversity in plant breeding.

Today, the International Center for Agricultural Research in the Dry Areas (ICARDA) receives financial support from the Crop Trust to conserve almost 4200 samples of grasspea in its genebank, with 2000 safely stored in the Svalbard Global Seed Vault above the Arctic Circle.

Of course, grasspea is not the only edible plant species that comes with a health risk. In South America, for example, there are so-called ‘bitter’ varieties of cassava, an important source of carbohydrate, producing cyanogenic compounds that must be removed before the roots are safe to eat. Indigenous communities throughout Brazil evolved techniques to express the poisonous juice and make the food safe. In other parts of South America ‘sweet’ varieties were selected over thousands of years, and became the genetic base of commercial cassava varieties grown world-wide. The International Center for Tropical Agriculture (CIAT), based in Cali, Colombia has the world’s largest cassava germplasm that I was privileged to see in 2016 when I was conducting an evaluation of the CGIAR’s genebanks program.

This grasspea story is a good example of how progress can be made when there’s a clear research project objective, funding is available, and researchers around the world agree to pool their expertise towards solving an important problem. With recent reports that the head of DFID (the UK’s government department managing overseas development assistance or ODA) is seriously considering making changes to the 0.7% of national income commitment to the ODA budget, grasspea improvement for marginalized communities goes to show just how important such funding is, and the potential impact it can have on the lives of some of the poorest people around the world. This is the raison d’être of international agricultural research for development, an endeavor in which I participated over four decades.


¹ Grasspea is a relative of the garden sweetpea, Lathyrus odoratus, a plant that is grown for its showy, fragrant blooms.

Crystal balls, accountability and risk: planning and managing agricultural research for development (R4D)

A few days ago, I wrote a piece about perceived or real threats to the UK’s development aid budget. I am very concerned that among politicians and the wider general public there is actually little understanding about the aims of international development aid, how it’s spent, what it has achieved, and even how it’s accounted for.

Throughout my career, I worked for organizations and programs that were supported from international development aid budgets. Even during the decade I was a faculty member at The University of Birmingham during the 1980s, I managed a research project on potatoes (a collaboration with the International Potato Center, or CIP, in Peru where I had been employed during the 1970s) funded by the UK’s Overseas Development Administration (ODA), the forerunner of today’s Department for International Development (DFID).

I actually spent 27 years working overseas for two international agricultural research centers in South and Central America, and in the Philippines, from 1973-1981 and from 1991-2010. These were CIP as I just mentioned, and the International Rice Research Institute (IRRI), a globally-important research center in Los Baños, south of Manila in the Philippines, working throughout Asia where rice is the staple food crop, and collaborating with the Africa Rice Centre (WARDA) in Africa, and the International Center for Tropical Agriculture (CIAT) in Latin America.

All four centers are members of the Consultative Group on International Agricultural Research (or CGIAR) that was established in 1971 to support investments in research and technology development geared toward increasing food production in the food-deficit countries of the world.

Dr Norman Borlaug

The CGIAR developed from earlier initiatives, going back to the early 1940s when the Rockefeller Foundation supported a program in Mexico prominent for the work of Norman Borlaug (who would be awarded the Nobel Peace Prize in 1970).

By 1960, Rockefeller was interested in expanding the possibilities of agricultural research and, joining with the Ford Foundation, established IRRI to work on rice in the Philippines, the first of what would become the CGIAR centers. In 2009/2010 IRRI celebrated its 50th anniversary. Then, in 1966, came the maize and wheat center in Mexico, CIMMYT—a logical development from the Mexico-Rockefeller program. CIMMYT was followed by two tropical agriculture centers, IITA in Nigeria and CIAT in Colombia, in 1967. Today, the CGIAR supports a network of 15 research centers around the world.

Peru (CIP); Colombia (CIAT); Mexico (CIMMYT); USA (IFPRI); Ivory Coast (Africa Rice); Nigeria (IITA); Kenya (ICRAF and ILRI); Lebanon (ICARDA); Italy (Bioversity International); India (ICRISAT); Sri Lanka (IWMI); Malaysia (Worldfish); Indonesia (CIFOR); and Philippines (IRRI)

The origins of the CGIAR and its evolution since 1971 are really quite interesting, involving the World Bank as the prime mover.

In 1969, World Bank President Robert McNamara (who had been US Secretary of Defense under Presidents Kennedy and Johnson) wrote to the heads of the Food and Agriculture Organization (FAO) in Rome and the United Nations Development Fund (UNDP) in New York saying: I am writing to propose that the FAO, the UNDP and the World Bank jointly undertake to organize a long-term program of support for regional agricultural research institutes. I have in mind support not only for some of the existing institutes, including the four now being supported by the Ford and Rockefeller Foundations [IRRI, CIMMYT, IITA, and CIAT], but also, as occasion permits, for a number of new ones.

Just click on this image to the left to open an interesting history of the CGIAR, published a few years ago when it celebrated its 40th anniversary.

I joined CIP in January 1973 as an Associate Taxonomist, not longer after it became a member of the CGIAR. In fact, my joining CIP had been delayed by more than a year (from September 1971) because the ODA was still evaluating whether to provide funds to CIP bilaterally or join the multilateral CGIAR system (which eventually happened). During 1973 or early 1974 I had the opportunity of meeting McNamara during his visit to CIP, something that had quite an impression on a 24 or 25 year old me.

In the first couple of decades the primary focus of the CGIAR was on enhancing the productivity of food crops through plant breeding and the use of genetic diversity held in the large and important genebanks of eleven centers. Towards the end of the 1980s and through the 1990s, the CGIAR centers took on a research role in natural resources management, an approach that has arguably had less success than crop productivity (because of the complexity of managing soil and water systems, ecosystems and the like).

In research approaches pioneered by CIP, a close link between the natural and social sciences has often been a feature of CGIAR research programs. It’s not uncommon to find plant breeders or agronomists, for example working alongside agricultural economists or anthropologists and sociologists, who provide the social context for the research for development that is at the heart of what the CGIAR does.

And it’s this research for development—rather than research for its own sake (as you might find in any university department)—that sets CGIAR research apart. I like to visualize it in this way. A problem area is identified that affects the livelihoods of farmers and those who depend on agriculture for their well-being. Solutions are sought through appropriate research, leading (hopefully) to positive outcomes and impacts. And impacts from research investment are what the donor community expects.

Of course, by its very nature, not all research leads to positive outcomes. If we knew the answers beforehand there would be no need to undertake any research at all. Unlike scientists who pursue knowledge for its own sake (as with many based in universities who develop expertise in specific disciplines), CGIAR scientists are expected to contribute their expertise and experience to research agendas developed by others. Some of this research can be quite basic, as with the study of crop genetics and genomes, for example, but always with a focus on how such knowledge can be used to improve the livelihoods of resource-poor farmers. Much research is applied. But wherever the research sits on the basic to applied continuum, it must be of high quality and stand up to scrutiny by the scientific community through peer-publication. In another blog post, I described the importance of good science at IRRI, for example, aimed at the crop that feeds half the world’s population in a daily basis.

Since 1972 (up to 2016 which was the latest audited financial statement) the CGIAR and its centers have received USD 15.4 billion. To some, that might seem an enormous sum dedicated to agricultural research, even though it was received over a 45 year period. As I pointed out earlier with regard to rice, the CGIAR centers focus on the crops and farming systems (in the broadest sense) in some of the poorest countries of the world, and most of the world’s population.

But has that investment achieved anything? Well, there are several ways of measuring impact, the economic return to investment being one. Just look at these impressive figures from CIAT in Colombia that undertakes research on beans, cassava, tropical forages (for pasture improvement), and rice.

For even more analysis of the impact of CGIAR research take a look at the 2010 Food Policy paper by agricultural economists and Renkow and Byerlee.

Over the years, however, the funding environment has become tighter, and donors to the CGIAR have demanded greater accountability. Nevertheless, in 2018 the CGIAR has an annual research portfolio of just over US$900 million with 11,000 staff working in more than 70 countries around the world. CGIAR provides a participatory mechanism for national governments, multilateral funding and development agencies and leading private foundations to finance some of the world’s most innovative agricultural research.

The donors are not a homogeneous group however. They obviously differ in the amounts they are prepared to commit to research for development. They focus on different priority regions and countries, or have interests in different areas of science. Some donors like to be closely involved in the research, attending annual progress meetings or setting up their own monitoring or reviews. Others are much more hands-off.

When I joined the CGIAR in 1973, unrestricted funds were given to centers, we developed our annual work programs and budget, and got on with the work. Moving to Costa Rica in 1976 to lead CIP’s regional program in Mexico, Central America and the Caribbean, I had an annual budget and was expected to send a quarterly report back to HQ in Lima. Everything was done using snail mail or telex. No email demands to attend to on almost a daily basis.

Much of the research carried out in the centers is now funded from bilateral grants from a range of donors. Just look at the number and complexity of grants that IRRI manages (see Exhibit 2 – page 41 and following – from the 2016 audited financial statement). Each of these represents the development of a grant proposal submitted for funding, with its own objectives, impact pathway, expected outputs and outcomes. These then have to be mapped to the CGIAR cross-center programs (in the past these were the individual center Medium Term Plans), in terms of relevance, staff time and resources.

What it also means is that staff spend a considerable amount of time writing reports for the donors: quarterly, biannually, or annually. Not all have the same format, and it’s quite a challenge I have to say, to keep on top of that research complexity. In the early 2000s the donors also demanded increased attention to the management of risk, and I have written about that elsewhere in this blog.

And that’s how I got into research management in 2001, when IRRI Director General Ron Cantrell invited me to join the senior management team as Director for Program Planning & Coordination (later Communications).

For various reasons, the institute did not have a good handle on current research grants, nor their value and commitments. There just wasn’t a central database of these grants. Such was the situation that several donors were threatening to withhold future grants if the institute didn’t get its act together, and begin accounting more reliably for the funding received, and complying with the terms and conditions of each grant.

Within a week I’d identified most (but certainly not all) active research grants, even those that had been completed but not necessarily reported back to the donors. It was also necessary to reconcile information about the grants with that held by the finance office who managed the financial side of each grant. Although I met resistance for several months from finance office staff, I eventually prevailed and had them accept a system of grant identification using a unique number. I was amazed that they were unable to understand from the outset how and why a unique identifier for each grant was not only desirable but an absolute necessity. I found that my experience in managing the world’s largest genebank for rice with over 100,000 samples or accessions stood me in good stead in this respect. Genebank accessions have a range of information types that facilitate their management and conservation and use. I just treated research grants like genebank accessions, and built our information systems around that concept.

Eric Clutario

I was expressly fortunate to recruit a very talented database manager, Eric Clutario, who very quickly grasped the concepts behind what I was truing to achieve, and built an important online information management system that became the ‘envy’ of many of the other centers.

We quickly restored IRRI’s trust with the donors, and the whole process of developing grant proposals and accounting for the research by regular reporting became the norm at IRRI. By the time IRRI received its first grant from the Bill & Melinda Gates Foundation (for work on submergence tolerant rice) all the project management systems had been in place for several years and we coped pretty well with a complex and detailed grant proposal.

Since I retired from IRRI in 2010, and after several years of ‘reform’ the structure and funding of the CGIAR has changed somewhat. Centers no longer prepare their own Medium Term Plans. Instead, they commit to CGIAR Research Programs and Platforms. Some donors still provide support with few restrictions on how and where it can be spent. Most funding is bilateral support however, and with that comes the plethora of reporting—and accountability—that I have described.

Managing a research agenda in one of the CGIAR centers is much more complex than in a university (where each faculty member ‘does their own thing’). Short-term bilateral funding (mostly three years) on fairly narrow topics are now the components of much broader research strategies and programs. Just click on the image on the right to read all about the research organization and focus of the ‘new’ CGIAR. R4D is very important. It has provided solutions to many important challenges facing farmers and resource poor people in the developing world. Overseas development aid has achieved considerable traction through agricultural research and needs carefully protecting.

Development aid is under threat . . . and Brexit isn’t helping

The United Kingdom is one of just a handful of countries that has committed to spend 0.7% of Gross National Income (GNI) on overseas development assistance (ODA or foreign aid) in support of the UN’s development goals. In fact that 0.7% target commitment is enshrined in UK law passed in 2015 (under a Conservative government), and the target has been met in every year since 2013. That’s something we should be proud of. Even the Tories should be proud of that. It seems, however, that many aren’t.

For a variety of reasons, the aid budget is under threat. After years of government austerity and the decline of home-grown services (NHS, police, education, and the like) through under-funding, and as we lurch towards Brexit, the right-wing media and politicians are seizing every opportunity to ignore (or actively distort, even trivialize) the objectives of development aid and what it has achieved around the world.  Or maybe they just lack understanding.

In 2016, the UK’s ODA budget, administered by the Department for International Development (DFID), was just over £13 billion (almost USD20 billion). Check this link to see where DFID works and on what sort of projects it spends its budget. That budget has ‘soared’, according to a recent claim by The Daily Mail.

In the post-Brexit referendum febrile atmosphere, the whole topic of development aid has seemingly become toxic with increasing calls among the right-wing media, headed by The Daily Mail (and supported by The Daily Express and The Telegraph) for the development budget to be reduced and instead spent on hiring more doctors and nurses, and other home-based services and projects, pandering to the prejudices of its readers. Such simplistic messages are grist to the mill for anyone troubled by the UK’s engagement with the world.

From: John Stevens and Daniel Martin for the Daily Mail, published at 22:42, 5 April 2018 | Updated: 23:34, 5 April 2018

There is unfortunately little understanding of what development assistance is all about, and right-wing politicians who really should know better, like the Member for Northeast Somerset (and the Eighteenth Century), Jacob Rees-Mogg have jumped on the anti-aid bandwagon, making statements such as: Protecting the overseas aid budget continues to be a costly mistake when there are so many other pressing demands on the budget.

Now there are calls for that 2015 Act of Parliament to be looked at again. Indeed, I just came across an online petition just yesterday calling on Parliament to debate a reduction of the development aid budget to just 0.2% of GNI. However, 100,000 signatures are needed to trigger a debate, and as I checked this morning it didn’t seem to be gaining much traction.

I agree it would be inaccurate to claim that all development aid spending has been wise, reached its ultimate beneficiaries, or achieved the impacts and outcomes intended. Some has undoubtedly ended up in the coffers of corrupt politicians.

I cannot agree however, with Conservative MP for Wellingborough and arch-Brexiteer, Peter Bone, who is reported as stating: Much of the money is not spent properly … What I want to see is more of that money spent in our own country … The way to improve the situation in developing countries is to trade with them.

As an example of the trivialization by the media of what development aid is intended for, let me highlight one example that achieved some notoriety, and was seized upon to discredit development aid.

What was particularly irksome apparently, with a frenzy whipped up by The Daily Mail and others, was the perceived frivolous donation (as high as £9 million, I have read) to a project that included the girl band Yegna, dubbed the Ethiopian Spice Girls, whose aim is to [inspire] positive behavior change for girls in Ethiopia through drama and music.

I do not know whether this aid did represent value for money; but I have read that the program did receive some positive reviews. However, the Independent Commission for Aid Impact raised some concerns as far back as 2012 about the Girl Effect project (known as Girl Hub then).

From their blinkered perspectives, various politicians have found it convenient to follow The Daily Mail narrative. What, it seems to me, they failed to comprehend (nor articulate for their constituencies) was how media strategies like the Girl Effect project can effectively target (and reach) millions of girls (and women) with messages fundamental to their welfare and well-being. After being in the media spotlight, and highlighted as an example of ‘misuse’ of the aid budget, the support was ended.

In a recent policy brief known as a ‘Green Paper’, A World for the Many Not the Few, a future Labour government has pledged to put women at the heart of British aid efforts, and broaden what has been described by much of the right-wing media as a left-wing agenda. Unsurprisingly this has received widespread criticism from those who want to reduce the ODA budget or cut it altogether.

But in many of the poorest countries of the world, development aid from the UK and other countries has brought about real change, particularly in the agricultural development arena, one with which I’m familiar, through the work carried out in 15 international agricultural research centers around the world supported through the Consultative Group on International Agricultural Research or CGIAR that was founded in 1971, the world’s largest global agricultural innovation network.

In a review article¹ published in Food Policy in 2010, agricultural economists Mitch Renkow and Derek Byerlee stated that CGIAR research contributions in crop genetic improvement, pest management, natural resources management, and policy research have, in the aggregate, yielded strongly  positive impacts relative to investment, and appear likely to continue doing so. Crop genetic improvement research stands out as having had the most profound documented positive impacts. Substantial evidence exists that other research areas within the CGIAR have had large beneficial impacts although often locally and nationally rather than internationally.

In terms of crop genetic improvement (CGI) they further stated that . . . estimates of the overall benefits of CGIAR’s contribution to CGI are extraordinarily large – in the billions of dollars. Most of these benefits are produced by the three main cereals [wheat, maize, and rice] . . . average annual benefits for CGIAR research for spring bread wheat, rice (Asia only), and maize (CIMMYT only) of $2.5, $10.8 and $0.6–0.8 billion, respectively . . . estimated rates of return to the CGIAR’s investment in CGI research ranging from 39% in Latin America to over 100% in Asia and MENA [Middle east and North Africa].

DFID continues to be a major supporter of the CGIAR research agenda, making the third largest contribution (click on the image above to open the full financial report for 2016) after the USA and the Bill & Melinda Gates Foundation. At £43.3 million (in 2016), DFID’s contribution to the CGIAR is a drop in the ocean compared to its overall aid budget. Yet the impact goes beyond the size of the contribution.

I don’t believe it’s unrealistic to claim that the CGIAR has been a major ODA success over the past 47 years. International agricultural research for development has bought time, and fewer people go to bed hungry each night.

Nevertheless, ODA is under threat everywhere. I am concerned that in the clamour to reduce (even scrap) the UK’s ODA international collaborations like the CGIAR will face even more funding challenges. In Donald Trump’s ‘America First’ dystopia there is no certainty that enormous support provided by USAID will continue at the same level.

Most of my professional career was concerned with international agricultural research for development, in South and Central America (with the International Potato Center, or CIP, from 1973 to 1981) and the International Rice Research Institute (IRRI) in the Philippines (from 1991 to 2010). The conservation of plant genetic resources or  agrobiodiversity in international genebanks (that I have highlighted in many stories on this blog) is supported through ODA. The crop improvement programs of the CGIAR centers like CIMMYT, IRRI, ICARDA and ICRISAT have released numerous improved varieties for use in agricultural systems around the world. Innovative research is combating the threats of new crop diseases or the difficulties of growing crops in areas subject to flooding or drought².

This research (often with critical links back into research institutes and universities in donor countries) has led to improvements in the lives of countless millions of poor people around the world. But the job is not finished. Populations continue to grow, with more mouths to feed. Civil unrest and conflicts continue to blight some of the poorest countries in the world. And biology and environment continue to throw challenges at us in the form of new disease strains or a changing climate, for example. Continued investment in ODA is essential and necessary to support agricultural research for development.

Agriculture is just one sector on the development spectrum.  Let’s not allow the likes of Jacob Rees-Mogg, Peter Bone, or The Daily Mail to capture the development debate for what appear to be their own xenophobic purposes.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

¹ Renkow, M and D Byerlee, 2010. The impacts of CGIAR research: A review of recent evidence. Food Policy 35 (5), 391-402. doi.org/10.1016/j.foodpol.2010.04.006

² In another blog post I will describe some of this innovative research and how the funding of agricultural research for development and greater accountability for ODA has become rather complicated over the past couple of decades.