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Abstract Map-based DNA fingerprinting with AFLP
markers provides a fast method for scanning the rice
genome. Three hundred AFLP markers identified with
ten primer combinations were mapped in two rice pop-
ulations. The genetic maps were aligned and almost full
coverage of the rice genome was obtained. The trans-
ferability of AFLP markers between indica X japonica
and indica X indica crosses was tested. The chromo-
somes were divided into DNA Fingerprint Linkage
Blocks (DFLBs) defined by specific AFLP markers.
Using these blocks, the degree of similarity or divergence
within specific chromosome regions was calculated for
nine varieties. Applications of map-based fingerprinting
for biodiversity studies and maker-assisted selection are
discussed.
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Introduction

Amplified fragment length polymorphisms (AFLPs)
have been successfully employed for DNA fingerprinting
(Zabeau and Vos 1993; Vos et al. 1995) in genetic
mapping and biodiversity studies in many plant species
including rice (Cho et al. 1996; Mackill et al. 1996; Zhu
1996; Quarrie et al. 1997, Zhu et al. 1998). AFLP
markers offer a number of important advantages. They
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are highly abundant and very efficient for rapid genome
coverage since a large number of polymorphic DNA
fragments are generated in a single PCR reaction. Thus,
AFLPs should be ideal for genotyping a large number of
varieties. Their transferability between crosses has been
verified in barley (Waugh et al. 1997; Qi et al. 1998) and
potato (Rouppe van der Voort et al. 1997).

Although the use of AFLP markers for map-based
DNA fingerprinting has been proposed (Zhu 1996; Zhu
et al. 1996, 1998), before mapped AFLP markers can be
used for assessing genomic variation within every chro-
mosome segment (genome scanning), some theoretical
and technical problems must be solved. The first is the
question of the transferability of mapped AFLP markers
between rice crosses. This concern arises from the tech-
nical difficulty involved in identifying the same DNA
fragments in different crosses and on different gels, and
from the possibility that different DNA fragments may
have similar electrophoretic mobilities. The second
problem is the adequacy of genome coverage within
different rice groups. Map-based DNA fingerprinting
will only be practical if it can be achieved using a small
number of PCR reactions and gels. Thirdly, an effective
analysis strategy has to be developed to quantify genetic
divergence more accurately by partitioning the overall
variation into variation between specific chromosome
regions (genomic variation).

Crop genome scanning — genotyping at the level of
defined chromosome segments or even at the gene level —
is important for several reasons. Firstly, it should reveal
the variation between varieties in different regions of the
genome. Secondly, it can be used for tracing genes or
chromosome segments through pedigrees. Thirdly, it will
help to develop a better strategy for constructing core
collections of germplasm that adequately represent each
chromosome segment. Fourthly, genome scanning by
map-based DNA fingerprinting will make it possible for
breeders to select genes in many regions of the genome
simultaneously.

RFLP and microsatellite markers are locus specific
and usually fully transferable between crosses. However,



a large number of separate assays must be used to cover
the whole genome. Therefore, AFLP markers seem more
suitable for genome scanning, while microsatellites can
be used for studying genome regions of particular inte-
rest. In this paper, map-based AFLP fingerprinting of
rice is described using two mapping populations and ten
AFLP primer combinations. Examples of assessment of
diversity at the chromosome segment level are presented
and the possible applications of this technique are dis-
cussed.

Materials and methods

Genetic stocks

Two mapping populations were analysed. The first is an F, pop-
ulation, consisting of 120 individuals, derived from a cross between
IR20 (indica) and 63-83 (japonica) (Quarrie et al. 1997; Zhu et al.
1998). The second is an F; recombinant inbred population of 133
lines, derived from a cross between H359 and 8558 (8558 is a
shortened term for variety Acc8558). Both H359 and 8558 were
classified as indica varieties, but 8558 may contain some genes from
japonica (Weiming Li, personal communication). Five other rice
varieties (IR64, 1R4630, IR15324, Bala and Azucena) were also
analysed.

Preparation of template DNA for AFLP reactions

Preparation of rice DNA was carried out as described in Zhu et al.
(1998). The AFLP procedure followed Vos et al. (1995). The
primers used are listed in Table 1.

Genetic map construction and alignment

The framework genetic linkage maps of IR20 x 63-83 and
H359 x 8558 were from Quarrie et al. (1997) and Zhu et al. (1998),
and Li et al. respectively. From the framework map of IR20 x 63—
83, 111 RFLP markers and 31 AFLP markers were used. From the
framework map of H359 x 8558, 125 RFLP markers were used.
JoinMap V2.0 (Stam 1993) was used for regrouping and con-
structing new genetic maps incorporating previously scored
markers and new AFLP markers. The LOD threshold for grouping
was between 4 and 5. The genetic distances in ¢ctM were calculated
using the Kosambi mapping function.

The two maps were compared and aligned with a published
map from the Rice Genome Program, Japan (Harushima et al.
1998) using common RFLP markers. After the common AFLP

Table 1 The AFLP primer combinations tested
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markers had been identified, they were aligned again. The genetic
distances shown in bold face in Fig. 1 are those obtained from each
of the three independent maps.

Results
Screening of AFLP primers

To minimize the number of AFLP primer combinations
required for mapping and fingerprinting, highly infor-
mative primer pairs were needed. To identify such pairs,
52 primer combinations were screened against the par-
ents of the two mapping populations (Table 1). Based
on the quality of the fingerprint pattern and the total
number of polymorphic bands differentiating the two
parental combinations, ten primer pairs were selected
for map construction (Table 2).

Adding new AFLP markers to the two independent
maps

A total of 186 AFLPs, identified by nine primer com-
binations were scored in IR20 x 63-83 (Table 2). These
AFLP markers were added to the existing map of 142
markers. With a total of 328 markers, the map has a
total length of 1239 cM. There are seven gaps of around
20 cM, but no gap is longer than 22 cM.

In all, 154 AFLP markers from seven primer com-
binations were added to the existing map of
H359 x 8558. With a total of 279 markers, this map has
a length of 1049.1 cM. The largest gap — 19.7 cM — is
located on Chromosome 4.

Alignment of the maps

The two maps were aligned using 120 common RFLP
markers (Fig. 1). Most regions of the maps were com-
parable in genetic distance and the lengths of the linkage
groups were similar. In comparison to the reference map
(Harushima et al. 1998), IR20 x 63-83 (P-I) and
H359 x 8558 (P-1II) gave good coverage of the genome.

Table 2 Numbers of AFLP markers scored

Primer pairs

E12/M31 EI3/M48 E23/M35 E23/M54  E24/M62
E12/M35 E14/M48  E23/M36  E23/M58  E26/M50
E12M36 EI5/M48  E23/M37  E23/M60  E26/M60
E12/M37 El6/M48  E23/M38  E23/M61  E26/M62
E12/M38 E17/M48  E23/M39  E23/M62
E12/M39 EI$/M48  E23/M42  E23/M63
E12/M48 EI9/M48  E23/M43  E23/M84
E12/M55 E20/M48  E23/M45  E23/MS85
E12/M74 E21/M48  E23/M47  E23/MS86
E12/M85 E22/M48  E23/M50  E23/M87
E12/M86  E23/M48  E23/M52  E23/M88
E12/M87  E24/M48  E23/M53  E23/MS89

Primer pair Cross
1R20/68-83 H359/8558 Integrated

E12/M35 19 34 48
E12/M38 19 20 37
E12/M48 17 12 28
E12/M74 13 13 23
E22/M48 16 - 16
E23/M50 32 - 32
E23/M61 30 19 43
E23/M63 - 31 31
E23/M84 18 25 36
E26/M60 22 - 22
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Fig. 1a-1 Two linkage maps P-
I (IR20 x 63-83) and P-III
(H359 x 8558) were aligned
with the help of a reference map
(P-II, Nipponbare x Kasalath)
constructed by the Rice Ge-
nome Program in Japan (Ha-
rushima et al. 1998). The
markers and genetic distances
shown in bold face are taken
from the original maps. The
DNA fingerprint linkage blocks
defined for the assessment of
genomic diversity are illustrated

Fig. 1b
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map, was a stretch of about 12 ¢cM at the end of the

short arm of chromosome 2. The coverage of the map of
slightly greater

IR20 x 63-83 was
H359 x 8558.

than

tha

t of

Transferability of AFLP markers

AFLP markers were identified by their mobility and
intensity on gels. Fragments having the same mobility

and comparable density were designated as candidate



Fig. 1c

Fig. 1d

187

—— 0.0 —— E12M74-310b 0.0 vao
1.1 — cdo20A
141 ——— rge72s ———13.3 c725
0.0 ——— E12M48-1550
247 —— rgrs18 18.4 R518 76 E12M48-1730
27.8 c316————10.9 — ) c316
3A 14.5 C83a
16,4 ——F— E23M63-250b
1% FES
41.6 ———— rge63E———— —40.1 ——— c63 i
202—_)  cer
30.4 — [ — psriba
3727 < _ £23M61-2980
on 38.8 ——f——— psr30IF
61.5 c198 0.8 €198
672 —}—— merz
734 ——— £12M74-303b
az¢ bedese 47.5 —1—— ca48
82.6 1
826 P027816 80.2 (CEN) 552 | - E23me3-1420
885 ~ E12M74-1140 87.0 ———— (CEN) 56.1 ——f=— E23M61-168b
3B 11 f_\=< £23M61-3390 —57.4 —F — E£23M61-339b
89.9 E23M61-1740 88.7 — | —— WI100A————@0.2 — | psri00B
644 — — E23M63-290b
66.3 —f—— E23M63-2890
782 12M35-281b
81,1 ——4—— Elgmsg-74l;
89.0 E12M38-117b
100.6 —— R2SO——————90.1 I S k2o
— 107.8 ———— rgc136—— -116.9 ——4—— ClSd’——‘u:g < C63B
121.4 ——— c746 94.2 cr48
127.8 rges9s, 106.6 ———— E23M63-1480
130.4 \__/ 2630
\ / 187.1 c595
133.9 [ vateB 1 RES11
133.9 /——\ m-zazr 4 1208 —1 —— c12
3C| 134.5 1474 R3226 1263 | _ pers7sE
1390.7 r'r3226 126.2 - _< X31454
144.1 —=—— peries 1528 — | cs034 128.2 X3145B
. ps! - 153.3 RI1 927/—\130.0 R1927
144.7 rge393 2 AN AP
145.4 /‘\ P017721
150.1 £12M35-2810b 1402 — | £23MB4-7000
159.5 ——— RI925—————41.0 —F— R1925
L 167.2 —L 1357
P-I 4 P-II 4 P-III 4
— 0.0 ——— P2373 0.0 — psriso
0.0 ——— P017801
2.4 —1—— rgr1854 — 4.8 —1—— R185¢ AN I e
1.7 €£12M35-960
an| 74 —— €23MB4-4700 1158 135 \—_/ CI156
104 | £26M60-U180 24 1156 143 ¥ E b 1830
155 E£12M35-870
N BT i
L | g - 1 .
6 k j £22M48-U10b 19.0 c933 518 > < t33u61-4500
231 Q _ - E12u38-423b 19.0 {CEN) 23.2 NS €934
231 12u38-84b 232 77T\ E23u63-1810
4B | 250 ——— E23M50-213b 22.9 ——— (CEN) 24.3 E23M63-190b
269 %—_ % £22M48-U01b 251 E23M61-2135
2856 E12M38-435b
32.1 — [ £23M61-334b
377 — ) Po17804
39.0 —fF—— rge2138
424 |—— PO17818 53.] —f—— C976—————————————————44.8 ——}—
2 —— e
S — -
4.2 rgel40— 58.1 140 .
492 —F— £22m48-U175 0.3 cis0
4c
62.9 — _ rgeS13— 54.6 c513
650 — | £23M50-3460 66.6 —f— wsss———————— 56.1 —F—— psr38sB
6.7 | rgs13576 74.8 —f—— R896——————60.3 —} ——— RB96
73.8 ———— P027820 64.5 psro01B
e P027707 65.3 4 E23u3-1280
776 == P027710 882 |~ 234632260
85.0 cdo24d 71.8 —f—— €23M61-1326
o9 ———— cdozs2 733 —F— £23M84-2560
.3 —— rgy8026 748 £23M61-400b
87.1 ——4—— E23M84-259ba” 74.8 § £23M84-259b
4D 88.2 — — Notrz797 74.8 Y8026
934 |— £23m61-2680
107.4 £23M61-286b 77.7 £23M61-286b
15— g12u35-27200 1205 —L — cu4s5




188

Fig. 1e

Fig. 1f
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Fig. 1i

Fig. 1j
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Table 3 Locations of the 24 AFLP markers that segregated in both mapping populations

Marker IR20/63-83 H359/8558 Anchors
Chromosome cM Chromosome cM

E23M84-202 1 -23.1 1 —-11.1 psrll6
E12M35-161 1 13 1 15.7 psrll6
E23M84-235 1 17.2 1 12.5 psrll6
E23M84-520 2 26.3 2 46 rgcl96
E12M38-152 2 54.3 2 51.8 rgcl96
E23M61-339 3 -45.4 3 -63.4 rgel2
E23M84-259 4 2.8 4 0 rgy8026
E23M61-286 4 23.1 4 2.9 rgy8026
E12M35-540 5 49.9 5 44.4 rgr569
E12M48-259 6 52.1 6 55.2 rgc76/C688
E12M38-194 6 4 6 2.7 E12M48-259
E12M35-418 8 32.8 8 18 rgcl66
E23M84-213 9 -59.4 9 -54.1 rge356
E23M84-240 9 -28.3 9 -23.8 rgc356
E23M84-187 9 0 9 0 rge356
E23M61-158 10 -26.8 10 -23.5 rgcl186/G1082
E23M61-120 10 322 10 37.2 rgcl186/G1082
E12M74-460 11 —43.8 11 —47.2 rge82
E23M61-438 11 -23.2 11 -25.7 rge82
E12M74-97 11 -5 11 -10 rgc82
E12M35-155 11 12.7 11 6.7 rge82
E23M61-378 12 -37 12 -26.8 rgcl85
E12M74-178 12 -33 12 -32.6 rgcl8s
E12M35-171 12 -114 12 -10.3 rgcl85
Fig. 2 Linked AFLP finger-
prints of Chromosome 1 are
illustrated. The filled boxes in- Centromere
dicate the presence of a given
AFLP fragment and the open
boxes signal its absence. The
AFLP markers corresponding
to the illustrated squares are IR64
listed in Table 4. Two alterna-
tive ways of partitioning the H359
AFLP markers into fingerprint 8558
linkage blocks are represented IR20
by the solid and broken lines.

63-83

The larger blocks could be used
for genomic similarity/diver-

gence assessment and the smal-
ler ones could be used for
pedigree analysis to study re-
combination within chromo-
some segments

with similar mobility. This marker was thus eliminated
from the IR20 x 63-83 map and was also excluded from
the map-based DNA fingerprinting analysis. Besides
these fragments, three other markers scored in the
IR20 x 63-83 cross were found to be unlinked to any
other marker. These were also excluded.

Six primer combinations were common to both
crosses, and 24 out of the 116 (21%) segregating AFLP
bands which were mapped in the IR20 x 63-83 cross
were also mapped in the H359 x 8558 population. All
the common AFLPs mapped at similar positions (Fig. 1,
Table 3), indicating that the AFLP markers were gen-
erally transferable between populations. Therefore, it is

reasonable to assume that AFLP fragments of equiva-
lent size and intensity from different varieties will be
homologous.

DNA fingerprint linkage blocks (DFLBs)

For map-based analysis, each chromosome was di-
vided into DFLBs. The size and boundaries of the
blocks can be varied according to the requirements of
any given analysis and the availability of markers in
that region. The only possible and necessary rule was
that the boundary should be located at an obvious



Table 4 Genotypes of Chromosome 1 in the five varieties tested

AFLP markers®  Population Variety®

IR64 H359 8558 IR20 63-83

E12M38-480a P III 1
E12M38-475b P III
E23M50-U01b PI
E23M50-U0la PI
E12M35-580b P III
E23M84-354a P III
E23M84-332b P III
E12M35-327b PI
E23M84-116b P III
E12M35-426a P III
E23M84-331a P III

E12M74-430a PI
E23M61-354a PI
E23M84-630a
E12M74-412b PI
E23M61-449b P
E23M50-540b P
E12M38-189b P
E23M84-202b P
E12M38-190a P
E12M48-152a P
E22M48-U09%a P
E23M61-234b P
E23M61-304b P
E22M48-U18a P
E22M48-U18b P11

E12M35-143a P III
E12M35-145b P III
E12M35-161a P III

E26M60U35a PI
E23M84-235b
E23M61-264b PI
E23M61-499b PI
E12M74-335a PI
E12M38-545b PI
E12M74-320b P11
E12M38-145a
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—O =, OO O RO OO0~ RO~ —,O—~RO~=O—O
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OO == 00000000000~ mE = =000, R O—O—=OO~=—O

#The four blocks of data correspond to those delineated by the
solid lines in Fig. 2

®The presence of a given AFLP marker is indicated by 1, its ab-
sence by 0. Markers with missing data were excluded.

Fig. 3 Eight rice varieties were

compared with IR64. Genomic 6383
similarity was calculated for Azucena
every DNA fingerprint linkage

block (DFLB) and the degree of 8558
similarity is represented by the

proportion of the bar coloured Bala
black. The Nei’s parameter of

genetic similarity (mean) was

calculated using the data for all H359
the mapped AFLP markers. IR4830
These DFLBs correspond to

those in Fig. 1, except for some

merging owning to the reduction IR20

in the number of markers caused

by missing data. The mergers IR15324
were made between DFLB 4C

and 4D, 5A and 5B, 6A and 6B, IR64

8A and 8B, 8B and 8C, 9A and
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common gap if markers from more than one popu-
lations were involved. Thus, ambiguity of the marker
order across the DFLB boundaries can be minimized
or avoided.

To study genomic variation using DFLBs, the block
should be big enough to contain a reasonable number
(8-12) of mapped AFLP markers which can be derived
from the marker order of a combined map obtained by
aligning the maps in Fig. 1. In the present study each
chromosome was divided into two to four segments
(Fig. 1). For example, the AFLP markers on chromo-
some 1 were integrated and the genotypes of these
markers in five varieties are shown in Table 4.

To study the genotype of, or genetic recombination
in, a pedigree, smaller blocks could be defined. As an
example, a different division of Chromosome 1 is also
demonstrated (Fig. 2). These smaller blocks contain 3—5
markers so that they could have 8-32 possible geno-
types, making them suitable for pedigree analysis.

Map-based DNA fingerprinting of nine rice varieties

To develop the concept of AFLP fingerprint linkage
blocks (DFLBs), eight rice varieties were compared with
the typical indica cultivar IR64 (Fig. 3). The value of
Nei’s genetic similarity parameter for the eight varieties
to IR64 was 83%, 81%, 76%, 73%, 69%, 54%, 43%,
37% and 29% for IR15324, IR20, IR4630, H359, Bala,
8558, Azucena and 63-83, respectively. The advantage
of analysis by DFLBs is shown by the fact that some
chromosome regions deviated greatly from the overall
means. This applies, for instance, to japonica and indica
genotypes. For example, in DFLB 1A (data from 13
AFLP markers), the typical japonica varieties 63—-83 and
Azucena showed 92% and 83% similarity with IR64. A
high level of similarity was also found in DFLB 4A. In
contrast, the indica varieties IR15324 and IR64 differed

) B OB O N N

9B, 9C and 9D, and 11C and
11D

Chromosomes 1

7

9 10 1 12

- —
6 8

2 3 4 5 mean
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greatly in DFLB 4A despite a high level of similarity
overall (Fig. 3).

Discussion
Possible applications

Map-based DNA fingerprinting revealed considerable
variation in the level of similarity in different genomic
regions when different rice varieties were compared. This
information should be valuable for breeders requiring
variation at particular loci. Assessing genomic variation
in each chromosome segment provides a more precise
view of genetic differentiation and offers a new method
for defining and utilizing core collections of germplasm.

Moreover, genome scanning by map-based DNA fin-
gerprinting provides a new approach to marker-assisted
breeding. Because the genotype of each chromosome
segment in the offspring of a cross can be revealed by the
analysis of several PCR reactions, selection can be done
simultaneously for all the quantitative and qualitative
alleles whose genetic locations are known. Therefore,
genome scanning with map-based DNA fingerprinting
offers the possibility of genomic breeding, in which seg-
regation of the whole genome can be traced by markers.

Genome scanning of the pedigree of breeding
programs will provide valuable information on gene
flow and reveal strongly selected chromosome segments.
The latter would be expected to contain important
alleles and would be attractive subjects for further
molecular genetic study.

DFLBs

Definition of DNA fingerprint linkage blocks allows one
to analyse genomic diversity. However, no fixed, uni-
versal size or boundary need be chosen. Each DFLB
refers to a particular segment of chromosome based on
one or more particular linkage maps. Therefore, DFLBs
are arbitrary and temporary, and are referred only to the
linkage map used. However, DFLBs provide a means of
reducing data complexity to a manageable level which
allows the detection of recombinant chromosomes and
the assessment of genomic variation. Another advantage
of the concept of DFLBs is that each block can have a
large number of possible haplotypes (=2", where n is the
number of markers in the block). Therefore, although
AFLPs are dominant markers with low polymorphism,
DFLBs are variable enough for both pedigree analysis
and biodiversity study. Flexibility of size and tolerance
of ambiguity of marker order within blocks make the
genetic analysis more convenient.

Genomic diversity

The genomic diversity revealed in some DFLBs differs
greatly from the mean (genetic diversity). The causes of

these differences are not understood although their
pedigrees can be traced. For example, IR64 and
IR15324 are both indica varieties. They share 10 com-
mon ancestral parents (defined by Souza and Sorrells,
1989), while IR64 has five unique ones and IR15324 has
two, one of which is R. Heenati which probably con-
tributes 1/4 of the genome of IR15324 (based on the
pedigree). However, the question of whether R. Heenati
can possibly explain the observed difference between
IR64 and IR15324 in DFLB 4A will only be resolved by
genomic scanning of their pedigrees.

Map alignment

Alignment, rather than integration, of the maps was
used in this paper because alignment showed the trans-
ferability of AFLP markers and their original positions.
However, an integrated map is more suitable for defin-
ing smaller DNA fingerprint linkage blocks.

Coverage and resolution

AFLP markers vary in frequency in different groups of
rice varieties. Some AFLP markers are even specific to
one or more groups and therefore give no information
on variation within groups (Zhu 1996; Zhu et al. 1998).
This is the reason why two types of populations (in-
dica X japonica and indica X indica) were used to map
AFLP markers. As the number of mapped indica X in-
dica, indica X japonica and japonica X japonica crosses
increases, higher coverage of diversity with a minimum
number of primer combinations would be obtained.
Meanwhile, microsatellites are very polymorphic DNA
markers which have a definite genetic location and show
full transferability (Panaud et al. 1996; Chen et al. 1997).
They can be used to anchor AFLP maps and will greatly
assist the study of particular chromosome segments of
interest. Therefore, a combined AFLP/microsatellite
approach provides a rapid method for high-density
marker coverage of the genome.
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