Potatoes have no special chemistry to induce romance . . . but they brought us together

Saturday 13 October 1973, 11:30 am
Lima, Peru

Fifty years ago today, Steph and I were married at the town hall (municipalidad) in the Miraflores district of Lima, where we had an apartment on Avenida José Larco. Steph had turned 24 just five days earlier; it would be my 25th in the middle of November.

Municipalidad de Miraflores, Lima

It was a brief ceremony, lasting 15 minutes at most, and a quiet affair.  Just Steph and me, and our two witnesses, John and Marian Vessey. And the mayor (or other official) of course.

John, a plant pathologist working on bacterial diseases of potato, was a colleague of ours at the International Potato Center (CIP) in Lima, who had joined the center a few months before I arrived in Lima in January 1973.

Enjoying pre-lunch drinks with Marian and John at ‘La Granja Azul‘ restaurant at Santa Clara – Ate, on the outskirts of Lima.

The newly-weds.


It’s by chance, I suppose, that Steph and I got together in the first place. We met at the University of Birmingham, where we studied for our MSc degrees in Conservation and Utilization of Plant Genetic Resources.

Steph arrived in Birmingham in September 1971, just after I had finished the one-year course. I was expecting imminently to head off to Peru where I had been offered a position at CIP to help curate the large collection of native potato varieties in the CIP genebank. So, had I flown off to South America then, our paths would have hardly crossed.

But fate stepped in I guess.

My departure to Peru was delayed until January 1973. So I registered for a PhD with renowned potato expert Professor Jack Hawkes (right, head of the Department of Botany and architect of the MSc course), and began my research in Birmingham while CIP’s Director General, Richard Sawyer, negotiated a financial package from the British government to support the center’s research for development agenda, and my work there in particular.

It must have been early summer 1972 that Steph and I first got together. Having completed the MSc written exams in May, Steph began a research project on reproductive strategies in three legume species, directed by Dr Trevor Williams (who had supervised my project a year earlier on lentils). And she completed the course in September.

By then, she had successfully applied for a scientific officer position at the Scottish Plant Breeding Station in Edinburgh (SPBS, now part—after several interim phases—of the James Hutton Institute in Dundee), as Assistant Curator of the Commonwealth Potato Collection. But that position wasn’t due to start until November.

Our VW Variant in Peru, around May 1973 – before receiving a Peruvian registration plate.

In early November I took delivery of a left-hand-drive Volkswagen for shipment to Peru. On a rather dismal Birmingham morning, we loaded up the VW with Steph’s belongings and headed north to Edinburgh. She returned to Birmingham in mid-December for her graduation.

Then, just after Christmas 1972, we met up in a London for a couple of days before I was due to fly out to Lima.

At that time we could not make any firm commitments although we knew that—given the opportunity—we wanted to be together.

Again fate stepped in. On 4 January 1973, Jack Hawkes and I flew to Lima. Jack had been asked to organize a planning conference to guide CIP’s program to collect and conserve native Andean potato varieties and their wild relatives.

Potato varieties from the Andes of Peru.

While I stayed in a small hotel (the Pensión Beech, in the San Isidro district) until I could find an apartment to rent, Jack stayed with Richard Sawyer and his wife Norma. And it was over dinner one evening that Jack mentioned to Richard that I had a ‘significant other’ in the UK, also working on potato genetic resources, and was there a possibility of finding a position at CIP for her. Richard mulled the idea over, and quickly reached a decision: he offered Steph a position in the Breeding and Genetics Department to work with the germplasm collection.

With that, Steph resigned from the SPBS and made plans to move to Lima in July, with us planning to get married later on in the year.

In the CIP germplasm screenhouses in La Molina. Bottom: with Peruvian potato expert Ing. Carlos Ochoa.


A couple of weeks after I arrived in Peru, I found an apartment in Miraflores at 156 Los Pinos (how that whole area has changed in the intervening 50 years), and that’s where Steph joined me.

In our Los Pinos apartment, Miraflores in July 1973.

A few weeks later we found a larger apartment, nearby at 730 Avda. Larco, apartment 1003. Very interesting during earthquakes!

Around mid-August 1973 we began the paperwork (all those tramites!) to marry in Peru. Not as simple as you might think, but on reflection perhaps not as difficult as we anticipated.

While we were allowed to post marriage banns in the British Embassy, we had to announce our intention to marry in the official Peruvian government gazette, El Peruano, and one of the principal daily broadsheets (El Comercio if memory serves me right), and have the police visit us at our apartment to verify our address. I think we also had to have blood tests as well. This all took time, but everything was eventually in place for us to set the wedding date: 13 October.

Some friends wanted to give us a big wedding, but Steph said she just wanted an intimate, quiet day. So that’s what we organized.

In the week leading up to our wedding, we had to present all the notarised documents at the municipality. After the ceremony, we signed the registry, hand-written in enormous volumes (or tomos). There was a bank of clerical staff, all with their Parker fountain pens, inscribing the details of each wedding in their respective tomo. A week later we collected our Constancia de Matrimonio (with some errors) which detailed in which tomo (No. 83, page 706) our marriage had been recorded, as well as photocopies (now sadly faded) of the actual page.

My work, collecting potatoes, took me all over the Andes; not so much for Steph who only made visits every other week or so to CIP’s highland experiment station (at over 3000 masl) in Huancayo east of Lima, and a six hour drive away.

However, Steph and I explored Peru together as much as we could, taking our VW on several long trips, to the north and central Andes, and south to Lake Titicaca. We also delayed our honeymoon until December 1973, flying to Cusco for a few days, and spending one night at Machu Picchu.

At Machu Picchu, December 1973.


In May 1975, we returned to the UK for seven months for me to complete my PhD, returning to Lima just before New Year.

With Jack Hakes and Trevor Williams at my PhD graduation on 12 December 1975 at the University of Birmingham.

Christmas Day 1976 in Turrialba.

Then, in April 1976, we moved to Costa Rica where I worked on potato diseases and production, based in Turrialba, some 70 km east of the capital city, San José. Under the terms of our visas, Steph was not permitted to work in Costa Rica. I became regional representative for CIP’s Region II (Mexico, Central America, and the Caribbean) in August 1997 when my colleague, Oscar Hidalgo (who was based in Toluca, Mexico) headed to North Carolina to begin his PhD studies.

Our elder daughter Hannah Louise was born in San José in April 1978. Later that year, we took our first home leave in the UK and both sets of grandparents were delighted to meet their first granddaughter.

24 April 1978 in the Clinica Santa Rita, San José, Costa Rica.

On home leave in the UK in September 1978.

With Steph’s parents Myrtle and Arthur (top) in Southend-on-Sea, and mine, Lilian and Fred, in Leek.

We spent five happy years in Costa Rica before moving back to Lima at the end of November 1980, and began making plans to move to the Philippines by Easter 1981.

However, in early 1981, a lectureship was created at the University of Birmingham, in the Department of Plant Biology (formerly Botany, where Steph and I had studied), for which I successfully applied. We left CIP at the end of March and had set up home in Bromsgrove (about 13 miles south of Birmingham in north Worcestershire) by the beginning of July.

4 Davenport Drive


A decade after we were married, we were already a family of four. In May 1982 Philippa Alice was born in Bromsgrove.

30 May 1982 in Bromsgrove hospital.

During the 1980s we enjoyed many family holidays, including this one in 1983 on the canals close to home.

Many other family holidays followed, in South Wales, in Norfolk, on the North York Moors, and in 1989, in the Canary Islands.

In Tenerife, Canary Islands in July 1989. Steph is carrying the binoculars that I bought around 1964 and which I still possess.

Hannah (left) and Philippa (right) thrived at local Finstall First School, shown here on their first day of school in 1983 and 1987, respectively.

My work at Birmingham kept me very busy (perhaps too busy), but I particularly enjoyed working with my graduate students (many of them from overseas), and my undergraduate tutees.

All in all, it looked like Birmingham would be a job for life. That was not to be, however. By the end of the 1980s, academic life had sadly lost much of its allure, thanks in no small part to the policies and actions of the Thatcher government. We moved on.


By 1993, we had already been in the Philippines for almost two years, where I had been hired (from July 1991) as head of the Genetic Resources Center (GRC) at the International Rice Research Institute (IRRI) in Los Baños, some 65 km south of Manila in the Philippines. I moved there ahead of Steph and the girls (then aged 13 and nine) who joined me just after Christmas 1991.

Meeting fellow newcomer and head of communications, Ted Hutchcroft and his wife at our joint IRRI welcoming party in early 1992.

In 1993 I learned to scuba dive, a year after Hannah, and it was one of the best things I’ve ever done. Philippa trained a couple of years later.

Getting ready to dive, at Arthur’s Place, Anilao, Philippines in January 2003.

Steph was quite content simply to snorkel or beachcomb, and we derived great pleasure from our weekends away (about eight or nine a year) at Anilao, 92 km south from Los Baños. In fact, our weekends in Anilao were one of our greatest enjoyments during the 19 years we spent in the Philippines.

Steph became an enthusiastic beader and has made several hundred pieces of jewelry since then. In Los Baños we had a live-in helper, Lilia, and so in the heat of Los Baños, Steph was spared the drudgery of housework or cooking, and could focus on the hobbies she enjoyed, including a daily swim in the IRRI pool, and looking after her garden and orchids.

Steph and Lilia on our last day in IRRI Staff Housing #15 on 30 April 2010.

Hannah and Philippa completed their school education at the International School Manila (ISM) in 1995 and 1999 respectively, both passing the International Baccalaureate Diploma with commendably high scores.

Graduation at ISM: Hannah and Philippa with their friends from around the world.

Traveling to Manila each day from Los Baños had not been an easy journey, due to continual roadworks and indescribable traffic. It was at least two hours each way. By the time Philippa finished school in 1999, the buses were leaving Los Baños at 04:30 in order to reach Manila by the start of classes at 07:15.

In October 1996, Hannah started her university degree in psychology and social anthropology at Swansea University in the UK. However, after two years, she transferred to Macalester College, a highly-rated liberal arts college in St Paul, Minnesota, graduating summa cum laude in psychology and anthropology in May 2000. She then registered for a PhD in industrial and organizational psychology at the University of Minnesota. Philippa began her BSc degree in psychology at the prestigious University of Durham, UK later that same year, in October.

Hannah’s graduation in May 2000 at Macalester College, with Philippa and Michael (Hannah’s boyfriend, now her husband).

Once Hannah and Philippa had left for university, IRRI paid for return visits each year, especially at Christmas.

Christmas 2001. Michael joined Hannah for the visit.

While my work took me outside the Philippines quite often, Steph and I did manage holidays together in Hong Kong/Macau and Australia. And, together with Philippa, we toured Angkor Wat in Cambodia in December 2000.

But Steph also accompanied me on work trips to Laos, Bali, and Japan. She also joined me and my staff when we visited the rice terraces in northern Luzon in March 2009.

Enjoying a cold beer as the sun goes down, near Sagada, northern Luzon, Philippines.

Overlooking the Batad rice terraces in northern Luzon in March 2009.

However, we always used our annual home leave allowance to return to the UK, stay in our home in Bromsgrove (which we had purposely left unoccupied), and meet up with family and friends.

Philippa was awarded a 2:1 degree in July 2003, and the graduation ceremony took place inside Durham Cathedral. She then headed off to Vancouver for a year, before returning to the UK and looking for a job, eventually settling in Newcastle upon Tyne where she has lived ever since.

Outside Durham Cathedral where Phil received her BSc degree from the university’s Chancellor, the late Sir Peter Ustinov.

Hannah married Michael in May 2006, and finished her PhD. We flew to Minnesota from the Philippines.

15 May 2006, at the Marjorie McNeely Conservatory in Como Park, St Paul.

PhD graduation at the University of Minnesota.

Philippa registered for a PhD in biological psychology at Northumbria University in Newcastle upon Tyne where she was already working.

Professionally, the period between 2001 and my retirement in 2010 was the most satisfying. I had changed positions at IRRI in May, moving from GRC to join the institute’s senior management team as Director for Program Planning and Communications (DPPC). I worked with a great team, and we really made an impact to increase donor support for IRRI’s research program. However, by 2008/9 when my contract was up for renewal, Steph and I had already agreed not to continue with IRRI, but take early retirement and return to the UK.

But not quite yet. IRRI’s Director General, Bob Zeigler, persuaded me to stay on for another year, and organize the celebrations for the institute’s 50th anniversary. Which I duly did, and had great fun doing so.

But as our retirement date approached in April 2010, I was honored by the institute’s Board of Trustees with a farewell party (despedida) coinciding with the 50th anniversary of the very first Board meeting in April 1960.

14 April 2010 – IRRI’s 50th celebration dinner and our despedida.


Friday 30 April was my last day in the office.

With my DPPC friends. L-R: Eric, Corinta, Zeny, me, Vhel, and Yeyet.

We flew back to the UK two days later, arriving on Monday 3 May and taking delivery of our new car, a Peugeot 308, the following day.

Philippa and Andi flew off to New York in October 2010 and were married in Central Park. She graduated with her PhD in December.

By 2013 we had been married for four decades, and were well-settled into retirement, enjoying all the opportunities good weather gave us to really explore Worcestershire and neighboring counties, especially as National Trust and English Heritage members. And touring Scotland in 2015, Northern Ireland in 2017, Cornwall in 2018, East Sussex and Kent in 2019, and Hampshire and West Sussex in 2022.

We were, by then, the proud grandparents of three beautiful boys and a girl.

Callum Andrew (August 2010) – St Paul, Minnesota

Elvis Dexter (September 2011) – Newcastle upon Tyne

Zoë Isobel (May 2012) – St Paul, Minnesota

Felix Sylvester (September 2013) – Newcastle upon Tyne

And how could we ever forget a very special day in February 2012, when Steph, Philippa and my former colleague from IRRI, Corinta joined me at Buckingham Palace for an investiture.

Receiving my OBE from King Charles III (then HRH The Prince of Wales) on 14 February 2012.

With Steph and Philippa outside the gates of Buckingham Palace.

With Corinta and Steph in the courtyard of Buckingham Palace after the investiture.

Since 2010, we have traveled to the USA each year except during the pandemic years (2020-2022), and only returning there this past May and June. We’ve made some pretty impressive road trips around the USA, taking in the east and west coasts, and all points in between with the exception of the Deep South. Just click here to find a list of those road trips.

In July 2016, a few months after I broke my leg, Hannah and family came over to the UK, and we got together with Phil and Andi and the boys for the first time, sharing a house in the New Forest.

Our first group photo as a family, near Beaulieu Road station in the New Forest, 7 July 2016. L-R: Zoë, Michael, me (still using a walking stick), Steph, Callum, Hannah, Elvis, Andi, Felix, and Philippa.

And they came over again in July 2022, to our new home in the northeast of England where we had moved from Bromsgrove in October 2020 at the height of the Covid-19 pandemic.

In our garden in Backworth, North Tyneside, August 2022.

L-R: Felix, Elvis, Zoë, and Callum, at Dunstanburgh Castle, Northumberland in August 2022.


So it’s 2023, and fifty years have passed since we married.

During our visit to the USA this past May and June, we met up with Roger Rowe and his wife Norma, along the Mississippi River at La Crosse in Wisconsin.

Roger joined CIP in 1973 as head of the Breeding and Genetics Department and was our first boss. Roger also co-supervised my PhD. So it was great meeting up with them again 50 years on.

We’ve been in the northeast just over three years now, and haven’t regretted for a moment making the move north. It’s a wonderful part of the country, and in fact has given us a new lease of life.

At Steel Rigg looking east towards the Whin Sill, Crag Lough, and Hadrian’s Wall, Northumberland, February 2022.

Steph has taken great pleasure in developing her new garden here. It’s a work in progress, and quite a different challenge from her garden in Worcestershire, discovering what she can grow and what won’t survive this far north or in the very heavy (and often waterlogged) soil.

22 August 2023

I’ve had much enjoyment writing this blog since 2012, combining my interests of writing and photography. It has certainly given me a focus in retirement. I never thought I’d still be writing as many stories, over 700 now, and approaching 780,000 words. Since returning to the UK, I’ve also tried to take a daily walk of 2-4 miles. However, that’s not been possible these past six months. A back and leg problem has curtailed my daily walk, but I’m hopeful that it will eventually resolve itself and I’ll be able to get out and about locally, especially along the famous North Tyneside waggonways.

After 50 years together, we have much to be thankful for. We’ve enjoyed the countries where we have lived and worked, or visited on vacation. Our daughters and their families are thriving. Hannah is a Senior Director of Talent Management and Strategy for one of the USA’s largest food companies, and Philippa is an Associate Professor of Biological Psychology at Northumbria University.

Sisters!

With Hannah and Michael, Callum and Zoë (and doggies Bo and Ollie, and cat Hobbes) in St Paul, MN on 18 June 2023.

With Philippa and Andi, Elvis and Felix (and doggies Rex and Noodle) on 2 September 2023.

And here we are, at South Stack cliffs, in the prime of life (taken in mid-September) when we enjoyed a short break in North Wales.

Steph with Philippa and family on her birthday on 8 October.

13 October 2023 – still going strong!


While drafting this reminiscence, I came across this article by Hannah Snyder on the Northwest Public Broadcasting website, and it inspired the title I used.

The best job ever?

I was asked recently what was the best job I’d had.

Well, I guess the best job was the one I was occupying at the time. Until it wasn’t.

As a teenager in the 1960s, I had a Saturday job at a local garage, Peppers of Leek, pumping gasoline and helping in the car parts store, for which I earned 15/- (fifteen shillings or 75p in new money), equivalent today of less than £18 for an eight hour shift. What exploitation!

However, discounting that Saturday job, then I’ve held five different positions at three organizations over a fulfilling career lasting 37 years and 4 months. I took early retirement at the end of April 2010, aged 61.


Exploring Peru
My first job was at the International Potato Center (CIP) in Lima, Peru. I first met Richard Sawyer (left), CIP’s Director General when he visited the University of Birmingham after I’d completed my MSc degree in genetic resources conservation and use in September 1971.  He confirmed my appointment at CIP from January 1973. It was my first encounter with an American.

As an Associate Taxonomist at CIP I had two responsibilities: collecting potato varieties in the Andes of Peru, which were added to CIP’s large germplasm collection; and completing the field research for my PhD at the University of Birmingham.

In May 1973, just a few months after I arrived in Peru, I travelled to the north of Peru, specifically to the Departments of Ancash and La Libertad, with my Peruvian colleague Zosimo Huaman (seen in the photo below with two farmers). We explored remote valleys in this region (that has the highest mountains in the country) for almost a month, arriving back in Lima with a handsome collection of potato varieties.

Looking north towards Peru’s highest mountain, Huascaran (6768 m) in the Callejon de Huaylas in Ancash.

Some of the places we visited were so remote we could only access them on foot or on horseback.

In February 1974 I traveled to the south of Peru to carry out a field study of mixed variety potato cultivation as part of my thesis research in the remote valley of Cuyo Cuyo (below) with its fabulous terraces or andenes, northeast of Lake Titicaca.

And then, in May, I explored the Department of Cajamarca in the north of Peru with a driver, Octavio, seen in the photo below marking potato tubers with a collection number while I discussed these samples with the farmer.

Three years passed by in a flash. It had been a fantastic opportunity for a young person like myself. I was just 24 when I headed to Peru in 1973.

Working in CIP’s potato field genebank at Huancayo, 3100 m (>10,000 feet) in the central Andes.

Not many folks enjoy the same level of freedom to pursue a project as I did, or to travel throughout such an awe-inspiring country. I continue to count my blessings.

I also had a fantastic supervisor/head of department in geneticist Dr Roger Rowe (left).


Heading to Central America
I stayed with CIP for another five years, until March 1981. But not in Lima. It would have been fun to remain in the germplasm program, but there wasn’t a position available. The only one was filled by Zosimo. In any case, I was keen to expand my potato horizons and learn more about potato production in the round. So, after completing my PhD in December 1975, I joined CIP’s Outreach Program (that, in the course of time, became the Regional Research Program), not entirely sure what the future held. Costa Rica was mooted as a possible regional location.

In January 1976, Roger Rowe, Ed French (head of plant pathology at CIP), and I made a recce visit to Costa Rica, where we met officials at CATIE in Turrialba and it was agreed that CATIE would host a CIP scientist to work on adaptation of potatoes to warm environments. My wife Steph and I finally made it to Turrialba in April, and I set about setting up my research.

CATIE plant pathologist Raul Moreno (left) explains the center’s research in Turrialba on multiple cropping systems to (L-R) University of Wisconsin professor Luis Sequeira, Ed French, and Roger Rowe.

Quite quickly the focus changed to identify resistance to a disease known as bacterial wilt.

Evaluating potatoes in the field at Turrialba in 1977 (top). Potatoes showing typical asymmetrical wilt symptoms (bottom left) and bacterial exudate in infected tubers (bottom right).

Not only did we test different potatoes varieties for resistance to the bacterium, but we developed different agronomic solutions to control the amount of disease that was surviving from one season to the next.

I also worked closely with colleagues in the Ministry of Agriculture and the University of Costa Rica, and with potato farmers to reduce the high use of fertilizers and pesticides, as well as setting up a potato seed production project.
We developed a major regional project, PRECODEPA, during this time, involving six countries in the region and Caribbean, and funded by the Swiss government.
I was just 27 when we moved to Costa Rica. This was my first taste of program management; I was on my own (although I did receive administrative backup from CATIE, where we lived). My boss in Lima, Dr Ken Brown (left, head of the Regional Research Program) managed all his staff outside Lima on ‘a light rein’: encouraging, supporting, correcting program alignment when necessary. And always with great humor.

We spent five, happy years in Costa Rica. The work was enjoyable. I had a great couple of technical staff, Jorge and Moises, and secretary Leda.

I worked with the CIP team in Toluca, Mexico, and after the regional team leader left for the USA to pursue his PhD, Richard Sawyer asked me to take on the leadership of the program, which I did for over three years.

I learnt to grow a potato crop, and work alongside farmers and various government officials from the region. I learnt a lot about people management, and was all set to continue my career with CIP.

However, by November 1980, I decided that I needed a change. I’d achieved as much as I could in Central America. So we returned to Lima, with the expectation of moving with CIP to Brazil or the Philippines.


Joining academia
But fate stepped in. I was asked to apply for a lectureship at Birmingham, in my old department, now renamed ‘Plant Biology’. In January 1981 I flew back to the UK for interview (at my own expense!) and was offered the position to start in April that year. So, with some regret—but full of anticipation—I resigned from CIP and we returned to the UK in mid-March.

With the forthcoming retirement in September 1982 of Professor Jack Hawkes (right), Mason Professor of Botany and genetic resources MSc course leader (who had supervised my PhD), the university created this new lectureship to ‘fill the teaching gap’ following Jack’s departure, particularly on the MSc course.

I spent the next ten years teaching and carrying out research on potatoes and legume species at Birmingham. I had quite a heavy teaching load, mostly with graduate MSc students studying the theory and practice of the conservation and use of plant genetic resources (the same course that I had attended a decade earlier).

I co-taught a BSc third (final) year module on genetic resources with my close friend and colleague Brian Ford-Lloyd (left), and contributed half the lectures in a second-year module on flowering plant taxonomy with another colleague, Richard Lester. Fortunately I had no first year teaching.

Over a decade I supervised or co-supervised ten PhD students, and perhaps 30 MSc students. I really enjoyed working with these graduates, mostly from overseas.

Around 1988, the four departments (Plant Biology, Zoology and Comparative Physiology, Microbiology, and Genetics) making up the School of Biological Sciences merged, and formed five research groups. I moved to the Plant Genetics Group, and was quite contented working with my new head of group, Professor Mike Kearsey (left above). Much better than the head of Plant Biology, Professor Jim Callow (right above, who was appointed in 1983 to succeed Hawkes as Mason Professor of Botany) who had little understanding of and empathy with my research interests.

By 1990 I still hadn’t hadn’t made Senior Lecturer, but I was on that particular pay scale and hoping for promotion imminently. I was working my way up the academic ladder, or at least I thought so. I took on wider responsibilities in the School of Biological Sciences, where I became Second Year Course Chair, and also as vice-chair of a university-wide initiative known as ‘Environmental Research Management’, set up to ‘market’ the university’s expertise in environmental research.

Nevertheless, I could see the writing on the wall. It was highly unlikely that I’d ever get my research on wild species funded (although I had received a large government grant to continue my potato collaboration with CIP). And with other work pressures, academia was beginning to lose its appeal.


Returning to international agricultural research
In September 1990, I received—quite out of the blue (and anonymously)—information about a new position at the International Rice Research Institute (IRRI) in the Philippines, as Head of a newly-created Genetic Resources Center (GRC).

Nothing ventured, nothing gained, I threw my proverbial hat in the ring, and was called for interview at the beginning of January 1991. My flight from London-Gatwick to Manila via Hong Kong was delayed more than 12 hours. Instead of arriving in Los Baños a day ahead of the interviews, I arrived in the early hours of the morning and managed about two hours sleep before I had a breakfast meeting with the Director General, Klaus Lampe (right) and his three deputies! The interview sessions lasted more than three days. There were two other candidates, friends of mine who had studied at Birmingham under Jack Hawkes!

To cut a long story short, I was offered the position at the end of January which I accepted once a starting salary had been agreed. However I wasn’t able to join IRRI until 1 July because I still had teaching and examination commitments at the university.

Quite a few of my university colleagues were surprised, concerned even, that I was giving up a tenured position. I’ll admit to some qualms as well. But the die was cast. I flew out to the Philippines on Sunday 30 June. Steph and our daughters Hannah (13) and Philippa (9) joined me at the end of December.

Not long after he joined IRRI in 1988, Klaus Lampe launched a major reorganization of departments and programs. The Genetic Resources Center combined two of the seed conservation and distribution activities of the institute: the International Rice Genebank (the largest and most genetically-diverse of its kind in the world), and the International Network for the Genetic Evaluation of Rice (INGER). Besides overall responsibility for GRC, I had day-to-day management of the genebank. INGER was led by an Indian geneticist and rice breeder Dr Seshu Durvasula who made it quite clear from the outset that he didn’t take kindly to these new arrangements nor having to report to someone who had never worked on rice. Such inflexible attitudes were not part of Lampe’s plan, and Seshu lasted only about 18 more months more before resigning. That’s yet another story.

I quickly realised that many improvements were needed to enhance the management of the genebank and its important rice germplasm collection. I took six months to familiarize myself fully with the genebank operations, consulting frequently with my staff, before making changes and assigning new responsibilities. Working with the genebank staff was a delight.

I convinced KLaus Lampe and senior management to invest appropriately in improving the genebank’s facilities, and to upgrade the positions of more than 70 staff. Since they constantly claimed that ‘the genebank was the jewel in IRRI’s crown‘, all I asked them was to put the money where their mouths were.

Our efforts paid off. We made the genebank ‘a model for others to emulate’. Not my words but those of external reviewers.

During my time in GRC, I had the privilege of meeting VIPs from around the world: presidents, prime ministers and other government officials, members of the diplomatic corps, and Nobel Prize winners.

In 1995 we initiated a major research and exploration project funded by the Swiss Government, which lasted for five years. We expanded the genebank collection by more than 25% to over 100,000 seed samples or accessions (since when it has grown further), many of them having been collected from farmers’ fields for the first time. This was a great opportunity to collect in more than 20 countries in Asia, Africa, and South and Central America where there were gaps in collections or, as in the case of Laos for example, war and other unrest had prevented any collections being made throughout the country until peace was established. In the photo below, taken in the Lao genebank at Vientiane in 1999, I’m with one of my staff Dr Seepana Appa Rao (center) and two genebank staff. On the left is Dr Chay Bounphanousay, head of the genebank, and now Director of the National Agriculture and Forestry Research Institute (NAFRI).

I had international commitments as well, chairing the Inter-Center Working Group on Genetic Resources (ICWG-GR) and establishing the System-wide Genetic Resources Program, the only program of the Consultative Group on International Agricultural Research (or CGIAR) involving all fifteen centers. In 1994, the ICWG-GR met in Kenya, and stayed at a hotel in the shadow of Mt Kenya (below). The ICWG-GR was a great group of colleagues to work with, and we worked together with great enthusiasm and collegiality. 

The early 1990s were an important time for genebanks since the Convention on Biological Diversity had come into effect in December 1992, and this began to have an impact on access to and use of genetic resources. However, one consequence was the increased politicization of genetic resources conservation and use. As the decade wore on, these aspects began to take up more and more of my time. Not so much fun for someone who was more interested in the technical and research aspects of genetic conservation.

 


A directorship beckons
Then, quite out of the blue at the beginning of January 2001, Director General Ron Cantrell (right) asked me to stop by his office. He proposed I should leave GRC and join the senior management team as a Director to reorganize and manage the institute’s research portfolio and relationships with the donor community. I said I’d think it over, talk with Steph, and give him my answer in a couple of days.

I turned him down! The  reasons are too complicated to explain here. I was contented in GRC. There were many things I still wanted to achieve there.

After about six weeks, Cantrell sent word he’d like to discuss his proposal once again. This time we came to an understanding, and my last day as head of GRC was 30 April 2001. I became IRRI’s Director for Program Planning and Coordination (later Communications) or DPPC, with line management for Communication and Publications Services (CPS), Library and Documentation Services (LDS), IT Services (ITS), the Development Office (DO), as well as the Program Planning and Communications unit (PPC).

Here I am with (left to right): Gene Hettel (CPS), Mila Ramos (LDS), Marco van den Berg (ITS), Duncan Macintosh (DO), and Corinta Guerta (PPC).

When I set up DPPC I inherited a small number of staff who had managed (not very effectively I’m sad to say) IRRI’s relationships with the donor community. IRRI’s reputation had hit rock bottom with its donors. I had to dig deep to understand just why the institute could not meet its reporting and financial obligations to the donors. After recruiting five new staff, we implemented new procedures to keep things on an even keel, and within six months we had salvaged what had been quite a dire situation. Data management and integration of information across different research and finance functions was the basis of the changes we made. And we never looked back. By the time I retired from IRRI, we had supported raising the institute’s annual budget to around USD 60 million, and IRRI’s was shining bright among the donors.

Here I am with PCC staff on my last day at IRRI, 30 April 2010. Left to right: Eric Clutario, Corinta Guerta, Zeny Federico, me, Vel Ilao, and Yeyet Enriquez. After I left IRRI, Corinta became head of PPC and was made a Director, the first national staff to rise through the ranks from Research Assistant in 1975 (she was originally a soil chemist) to a seat on the senior management committee.

As a Director, I was a member of IRRI’s senior management team taking responsibility for the institute’s strategy development and medium term plans, performance management, and several cross-cutting initiatives that enhanced IRRI’s welfare and that of the staff.

It wasn’t a bowl of cherries all the time at IRRI. There certainly were some impressive downs. The institute had a bit of a bleak patch for just under a decade from the time Lampe retired in 1995 until Bob Zeigler’s appointment in 2005. The institute had lost its way, and I guess that was one of the reasons I was asked to create the PPC office, to coordinate different functions of institute management.

But all good things come to an end, and by 2009 I’d already decided that I wanted to retire (and smell the roses, as they say), even though Zeigler encouraged me to stay on. By then I was already planning the celebrations for IRRI’s 50th anniversary, and agreed to see those through to April 2010. What fun we had, at the Big Show on Sunday 13 December 2009 and earlier.

With the Big Show production crew on stage afterwards.


The best?
Having thought long and hard about this, I believe that the DPPC role was the one I enjoyed most. That’s not to say that everything else I accomplished has not been cherished. But DPPC was different. I’d moved into a position where I could really influence events, I was managing areas of the institute’s portfolio and making a difference.

IRRI gave me the honour of hosting my despedida during the institute’s 50th gala anniversary dinner on 14 April 2010.

Do I have any regrets about the career choices I made? Not for one second.

I made some useful contributions to science (some of which is still being cited 40 years after publication). I traveled the world. I became fluent (for a while at least) in Spanish. And I have worked alongside many great scientists, fought with a few. Made many great friends, some sadly no longer with us.

Who could ask for more?


 

8 billion . . . and counting

This is the latest estimate of the world’s population announced by the United Nations on 15 November 2022. Can you imagine? I was born 74 years ago when the population was just over a quarter of what it is today.

So many more mouths to feed, so many challenges to overcome. And population growth fastest in many of the world’s poorest countries.

The UN’s latest prediction is that another billion will be added by 2037, and that . . . half of the world’s population growth will be concentrated in just nine countries: India, Nigeria, the Democratic Republic of the Congo, Pakistan, Ethiopia, the United Republic of Tanzania, the United States of America, Uganda and Indonesia (ordered by their expected contribution to total growth).


In 2021, the Food and Agriculture Organization of the UN or FAO reported that 193 million people in 53 countries or territories were facing acute food insecurity. And while conflict and the effects of the Covid pandemic are contributors to this state of affairs, there is no doubt that weather extremes are also a major contributing factor, affecting many more people worldwide. More frequent storms. Too much water—or too little. Rising temperatures reducing the agricultural productivity in many regions.

Sustainable food and agricultural production were appropriately important themes at the latest climate change conference—COP27—in Egypt. The Consultative Group on International Agricultural Research or CGIAR, the Food and Agriculture Organization of the UN or FAO, and the Rockefeller Foundation together were prominent at COP27 with the aim of putting agrifood systems transformation at the heart of the conference.

So, whether you are a believer in climate change or a denier (I’ve never been a climate change denier—quite the opposite, in fact), surely you have to accept that something strange is happening to our climate.

More than 30 years ago, two University of Birmingham colleagues—Brian Ford-Lloyd and Martin Parry—and I organized a workshop to discuss the impact of climate change on agriculture and the conservation of plant genetic resources (and how they could, and should, be used to mitigate the effects of a warming climate). The proceedings were published in 1990. Twenty-five years later, in 2014, we followed up with a second volume reflecting how the science of climate change itself had progressed, and how better we were equipped to use genetic resources to enhance crop productivity.


So while agriculture has been—and continues to be—one of the contributors to climate change (livestock, methane from rice paddies, use of fertilizers and the like) it can and has to be part of the solution.

Since more than half of the world’s population are now urban dwellers, they do not produce their own food. Or at least not enough (even if they grow their own vegetables and such on small holdings or allotments) to support many others.

Subsistence farming is not a solution either, even though these farmers can increase productivity by adopting new agricultural practices and higher-yielding crop varieties, if appropriate and affordable. And those campaigners who advocate the abolition of livestock farming (and I have seen one young person state that all farming should be stopped!) have little notion of how that would affect the lives of farmers globally, or where the rest of us would source our food.

There has been much talk recently about diversification of farming systems and adoption of so-called ‘orphan crops’ as part of the solution. Of course these approaches can make a difference, but should not diminish the role and importance of staple crops like wheat, maize, rice, potatoes, sorghum, and many others.

So what are the options? Investment in plant breeding, among others, has to be central to achieving food security. We will need a pipeline of crop varieties that are better adapted to changing environmental conditions, that are one step ahead of novel pest and disease variants. Crop productivity will have to increase significantly over the next few decades.


My first encounter with plant breeding—or plant breeders for that matter—was during a visit, in July 1969, to the Plant Breeding Institute (PBI) in Cambridge during a field course at the end of my second year undergraduate degree course at the University of Southampton. We heard all about wheat breeding and cytogenetics from Dr Ralph Riley FRS (right) no less (later knighted and Director of the PBI from 1972 to 1978). Our paths crossed again several times during the 1990s when he was associated with the CGIAR.

During my third and final year at Southampton, 1969-1970, I enjoyed a plant breeding module taught by genetics lecturer Dr Joe Smartt whose original research background was in peanut cytogenetics. He had spent some years in Africa as a peanut breeder in Zambia (then known as Northern Rhodesia).

It was in that course that I was introduced to one of the classic texts on the topic, Principles of Plant Breeding by University of California-Davis geneticist, RW Allard (first published in 1960). Sadly I no longer have my copy that I purchased in 1969. It was devoured by termites before I left the Philippines in 2010.

I’ve never been actively involved in plant breeding per se. However, the focus of my research was the conservation of genetic resources (of potatoes and rice, and some other species) and pre-breeding studies to facilitate the use of wild species in plant breeding.


It’s been my privilege to know and work with some outstanding plant breeders. Not only did they need a knowledge of genetics, reproductive behavior, physiology and agronomy of a plant species, but this was coupled with creativity, intuition and the famous ‘breeder’s eye’ to develop new varieties.

Perhaps the most famous plant breeder I met in the early 1990s was 1970 Nobel Peace Laureate (and ‘Father of the Green Revolution’) Norman Borlaug, who spent a lifetime breeding wheat varieties, first with the Rockefeller Foundation and then with the International Center for the Improvement of Maize and Wheat (CIMMYT) in Mexico. I wrote about that encounter here.

Explaining how rice seeds are stored in the International Rice Genebank at IRRI to Nobel Peace Laureate Norman Borlaug

In the potato world I met Stan Peloquin from the University of Wisconsin, George Mackay in Scotland, and John Hermsen from Wageningen University. I worked alongside Peruvian potato breeder and taxonomist Carlos Ochoa (below) for several years.

When I joined IRRI in the Philippines in 1991 as head of the Genetic Resources Center, one of my close colleagues was 1996 World Food Prize Laureate Gurdev Khush (below left) who led the institute’s breeding program. He and his team bred more than 300 varieties of rice, some of which—like IR36 and IR72—have been grown over millions of hectares and saved countless millions from starvation.

And another rice breeder (and 2004 World Food Prize Laureate) famous for NERICA rice was Monty Jones (above right) at the Africa Rice Center in West Africa. Monty was a graduate at Birmingham and I was the internal examiner for his PhD thesis in 1983.


Plant breeding has come a long way since I first became interested 50 years ago. Breeders now have access to a whole new toolbox to accelerate the development of new varieties, some of which were not available just a few years ago.

A decade ago I asked my friend and former colleague at IRRI, Ken McNally to contribute a review of genomics and other ‘omics’ technologies to discover and analyse useful traits in germplasm collections to the 2014 genetic resources book that I referred to earlier [1]. I’m sure there have been many useful developments in the intervening years.

One of these is gene editing, and Nicholas Karavolias (a graduate student at Berkeley University) has written an interesting review (from which the diagram above was sourced) of how the CRISPR gene editing tool is being used to improve crops and animals.

Among the climate change challenges that I mentioned earlier is the likelihood of increased flooding in many parts of the world. Just last year there were devastating floods along the Indus River in Pakistan where rice is an important crop, as it is in many Asian countries. Although grown in standing water in paddy fields, rice varieties will die if totally submerged for more than a few days when floods hit.

Rice paddies near Vientiane, Laos.

There are rice varieties that can grow rapidly as flood waters rise. Known as deepwater rice varieties, they can grow several centimeters a day. But they are never submerged as such for long.

The harvest of deepwater rice varieties in Thailand.

Over several decades, submergence tolerant rice varieties were developed in a collaborative project between US-based scientists and those at IRRI using marker-assisted selection (not genetic engineering) to identify a gene, named Sub1 (derived from an Indian rice variety) and incorporate it into breeding lines. My former IRRI colleagues, plant physiologist Abdelbagi Ismail and breeder David Mackill have written about response to flooding. In the video below you can see the impact of the Sub1 gene [2]. And the impact of that gene is readily seen in the video below which shows two forms of the rice variety IR64 with and without the Sub1 gene.

To date, the impact of genetic engineering in crop improvement has not been as significant as the technology promised, primarily because of opposition (environmental, social, and political) to the deployment of genetically-modified varieties. I wrote about that issue some years back, and focused on the situation of beta-carotene rich rice known as ‘Golden Rice’. After many years of development, it’s gratifying to see that Golden Rice (as the variety Malusog) has now been grown commercially in the Philippines for the first time, and can now deliver real health and nutritional benefits to Vitamin A impoverished communities in the Philippines and hopefully elsewhere before too long.

In recent weeks there have been interesting news releases about the development of perennial rice and its potential to mitigate some climate change effects, and reduce labor usage. Researchers at the John Innes Centre in the UK have identified a gene that they hope will make wheat varieties more heat-resistant. The need for trait identification has never been greater or the importance of the hundreds of thousands of crop varieties and wild species that are safely conserved in genebanks around the world. Fortunately, as mentioned earlier, there are now better and more efficient tools available to screen germplasm for disease and pest resistance, or for genes like the wheat gene just discussed.

In terms of adaptation to a changing climate through plant breeding, I guess much of the focus has been on developing varieties that are better adapted to changing environment, be that the physical or biotic environment.

But here’s another challenge that was first raised some years back by one of my former colleagues at IRRI, Melissa Fitzgerald (right) who was head of the Grain Quality, Nutrition, and Postharvest Center, and is now Professor and Interim Head of the School of Agriculture and Food Sciences at the University of Queensland, Australia.

And it’s to do with the potential global savings of carbon. Melissa and her colleagues were looking at the cooking time of different rice varieties. This is what she (and her co-authors wrote in an interesting 2009 paper):

The cooking time of rice is determined by the temperature at which the crystalline structures of the starch begin to melt. This is called gelatinization temperature (GT). Lowering the GT of the rice grain could decrease average cooking times by up to 4 min. Although this might initially seem entirely insignificant, by computing the number of times rice is cooked in any one day by millions of households around the world, a decrease of just 4 min for each cooking event could save >10,000 years of cooking time each day. This represents massive potential for global savings of carbon and is of particular relevance to poor, rural households that depend on scarce local supplies of fuel.

Now there’s a huge breeding challenge.

Anyway, in this post I’ve really only scratched the surface of the topic, but hopefully for those readers not familiar with plant breeding, what it entails, and what it can promise, I hope that I’ve explored a few interesting aspects.


[1] McNally, KL. 2014. Exploring ‘omics’ of genetic resources to mitigate the effects of climate change. In: M Jackson, B Ford-Lloyd & M Parry (eds), Plant Genetic Resources and Climate Change. CABI, Wallingford, UK. pp. 166-189

[2] Ismail, AM & Mackill, DJ. 2014. Response to flooding: submergence tolerance in rice. In: M Jackson, B Ford-Lloyd & M Parry (eds), Plant Genetic Resources and Climate Change. CABI, Wallingford, UK. pp. 251-269.

Launching a career in agricultural research

Over a career spanning almost four decades, I spent more than 27 years in international agricultural research in South and Central America, and Asia. And a decade teaching at the University of Birmingham.

It all started on this day, 50 years ago, when I joined the International Potato Center (CIP) in Lima, Peru as an Associate Taxonomist.

But first, let me take you back a couple of years, to September 1970.


I’d enrolled at the University of Birmingham for the MSc degree in Conservation and Utilization of Plant Genetic Resources, taught in the Department of Botany. It was the following February that I first heard about the possibility of joining CIP.

The head of department, potato expert Professor Jack Hawkes had just returned from a six week expedition to Bolivia (to collect wild species of potato) that was supported, in part, by the USAID-North Carolina State University-sponsored potato program in Peru.

The American joint leader of that program, Dr Richard Sawyer (left), mentioned to Jack that he wanted to send a young Peruvian scientist, Zosimo Huamán, to Birmingham for the MSc course in September 1971, and could he suggest anyone to fill a one-year vacancy.

On the night of his return to Birmingham, Jack phoned me about this exciting opportunity. And would I be interested. Interested? I’d long had an ambition to travel to South America, and Peru in particular.

However, my appointment at CIP was delayed until January 1973. Why? Let me explain.


In 1971, Sawyer was in the final stages of setting up the International Potato Center. However, a guaranteed funding stream for this proposed research center had not been fully identified.

At that time, there were four international agricultural research centers:

  • the International Rice Research Institute (IRRI) in Los Baños, the Philippines (founded in 1960);
  • the International Center for the Improvement of Maize and Wheat (CIMMYT) near Mexico City (1966);
  • the International Institute for Tropical Agriculture (IITA) in Ibadan, Nigeria (1967); and
  • the International Center for Tropical Agriculture (CIAT) in Cali, Colombia (also 1967).

All received bilateral funding from several donors, like the non-profit Rockefeller and Ford Foundations for example, or government agencies like USAID in the USA or the UK’s Overseas Development Administration.

In May 1971 there was a significant development in terms of long-term funding for agricultural research with the setting up of the Consultative Group on International Agricultural Research or CGIAR (an umbrella organization of donors, run from the World Bank in Washington, DC) to coordinate and support the four centers I already mentioned, and potentially others (like CIP) that were being established.

Since its inception, CGIAR-supported research was dedicated to reducing rural poverty, increasing food security, improving human health and nutrition, and ensuring more sustainable management of natural resources.

For more than 50 years, CGIAR and partners have delivered critical science and innovation to feed the world and end inequality. Its original mission—to solve hunger—is now expanding to address wider 21st century challenges, with the aim of transforming the world’s food, land, and water systems in a climate crisis. More on that below.


Back in 1971 the question was which funding agencies would become CGIAR members, and whether CIP would join the CGIAR (which it did in 1973).

Throughout 1971, Sawyer negotiated with the UK’s ODA to support CIP. But with the pending establishment of the CGIAR, ODA officials were uncertain whether to join that multilateral funding initiative or continue with the current bilateral funding model.

Decisions were, in the main, delayed. But one important decision did affect me directly. The ODA gave me a personal grant in September 1971 to remain in Birmingham until funding to CIP could be resolved. I therefore registered for a PhD on potatoes under Jack Hawkes’ supervision, and spent the next 15 months working on ideas I hoped to pursue further once I could get my hands on potatoes in the Andes, so to speak.

With Jack Hawkes in the potato field genebank at Huancayo, central Peru (3100 m above sea level) in early 1974.

In the event, the ODA provided £130,000 directly to CIP between 1973 and 1975 (= £1.858 million today), which funded, among other things, development of the center’s potato genebank, germplasm collecting missions around Peru, and associated research, as well as my position at the center.


Arriving in Peru was an ambition fulfilled, and working at a young center like CIP was a dream come true, even though, at just 24, I was somewhat wet behind the ears.

However, there were some great colleagues who taught me the ropes, and were important mentors then and throughout my career. I learnt a lot about working in a team, and about people management, very useful in later years as I moved up the management ladder.

For the first three years, my work was supervised and generously supported by an American geneticist, Dr Roger Rowe (right, with his wife Norma) who joined CIP on 1 May 1973 as head of the Breeding and Genetics Department. I owe a great deal to Roger who has remained a good friend all these years.

Always leading from the front, and never shy of making the tough decisions, Roger went on to fill senior management positions at several CGIAR centers. As a former colleague once commented to me, “Roger was the best Director General the CGIAR never had.” I couldn’t agree more.

When I joined CIP’s Regional Research group in 1976 and moved to Costa Rica, my new boss was Ken Brown (left). Ken had been working as a cotton physiologist in Pakistan for the Cotton Research Corporation, although he had previously worked in several African countries.

Ken never micromanaged his staff, was always there to help set priorities and give guidance. In those aspects of people management, I learned a lot from Ken, and he certainly earned my gratitude.

Aside from my work on potato genetic resources (and completing my PhD in 1975), I enjoyed the work on bacterial wilt and setting up a regional program, PRECODEPA as part of my Regional Research activities.

Jim Bryan (right, with Costarrican assistant Jorge Aguilar) was my closest friend at CIP. A native of Idaho, Jim was CIP’s seed production specialist. Down to earth and pragmatic, Jim taught me the importance of clean potato seed and seed production systems. He came to work with me in Costa Rica during 1979/80 and together we worked on a successful project (with the Costarrican Ministry of Agriculture) for the rapid multiplication of seed potatoes.

But by the end of 1980, I was looking for a new challenge when one came to my attention back home in the UK.


In April 1981, I joined the University of Birmingham as a Lecturer in the Department of Plant Biology (as the Department of Botany had been renamed since I graduated).

I have mixed feelings about that decade. Enthusiastic for the first few years, I became increasingly disenchanted with academic life. I enjoyed teaching genetic resources conservation to MSc students from many different countries, and particularly supervision of graduate students. I also kept a research link on true potato seed (TPS) with CIP, and around 1988 participated in a three-week review of a Swiss-funded seed production project at four locations in Peru.

With members of the project review team, with team leader Carlos Valverde on the right. Cesar Vittorelli, our CIP liaison is in the middle. I don’t remember the names of the two other team members, a Peruvian agronomist, on my right, and a Swiss economist between Vittorelli and Valverde.

But universities were under pressure from the Tory government of Margaret Thatcher. It was becoming a numbers, performance-driven game. And even though the prospects of promotion to Senior Lecturer were promising (I was already on the SL pay scale), by 1991 I was ready for a change.


And so I successfully applied for the position of Head of the Genetic Resources Center at IRRI, and once again working under the CGIAR umbrella. I moved to the Philippines in July, and stayed there for the next 19 years until retiring at the end of April 2010.

I was much happier at IRRI than Birmingham, although there were a number of challenges to face: both professional and personal such as raising two daughters in the Philippines (they were 13 and 9 when we moved to IRRI) and schooling at the International School Manila.

Whereas I’d joined CIP at the beginning of its institutional journey in 1973, IRRI already had a 30 year history in 1991. It was beginning to show its age, and much of the infrastructure built in the early 1960s had not fared well in the tropical climate of Los Baños and was in dire need of refurbishment.

A new Director General, Dr Klaus Lampe (right) from Germany was appointed in 1988 with a mandate to rejuvenate the institute before it slipped into terminal decline. That meant ‘asking’ many long-term staff to move on and make way for a cohort of new and younger staff. I was part of that recruitment drive. But turning around an institute with entrenched perspectives was no mean feat.


With responsibility for the world’s largest and most important rice genebank, and interacting with genebank colleagues at all the other centers, I took on the chair of the Inter-Center Working Group when we met in Ethiopia in January 1993, and in subsequent years took a major role in setting up the System-wide Genetic Resources Program (SGRP). This was a forerunner—and a successful one at that—of the programmatic approach adopted by the CGIAR centers.

The Swiss-funded project to collect and conserve rice varieties from >20 countries, and the innovative and pioneer research about on-farm conservation were highlights of the 1990s. As was the research, in collaboration with my old colleagues at Birmingham, on the use of molecular markers to study and conserve germplasm. A first for the CGIAR centers. Indeed a first for any crop.

Helping my genebank staff grow in their positions, and seeing them promoted gave me great satisfaction. I’d inherited a staff that essentially did what they were told to do. With encouragement from me they took on greater responsibility—and accountability—for various genebank operations, and their enthusiastic involvement allowed me to make the necessary changes to how the genebank was managed, and putting it at the forefront of CGIAR genebanks, a position it retains today.

My closest friend and colleague at IRRI was fellow Brit and crop modeller, Dr John Sheehy (right). John joined the institute in 1995, and I was chair of his appointment committee. Within a short time of meeting John for the first time, I recognized someone with a keen intellect, who was not constrained by a long-term rice perspective, and who would, I believed, bring some exceptional scientific skills and thinking to the institute.

Among his achievements were a concept for C4 rice, and persuading the Bill and Melinda Gates Foundation to back a worldwide consortium (now administered from the University of Oxford) of some of the best scientists working on photosynthesis to make this concept a reality.

By May 2001, however, change was in the air. I was asked to leave the Genetic Resources Center (and research) and join IRRI’s senior management team as Director for Program Planning and Communications, to reconnect the institute with its funding donors, and develop a strategy to increase financial support. I also took IT Services, the Library and Documentation Services, Communication and Publication Services, and the Development Office under my wing.

IRRI’s reputation with its donors was at rock bottom. Even the Director General, Ron Cantrell, wasn’t sure what IRRI’s financial and reporting commitments were.

We turned this around within six months, and quickly re-established IRRI as a reliable partner under the CGIAR. By the time I left IRRI in 2010, my office had helped the institute increase its budget to US$60 million p.a.


This increased emphasis on funding was important as, by the end of the 1990s, several donors were raising concerns about the focus of the centers and how they should be supported. Furthermore, a number of external factors like the Convention on Biological Diversity (CBD, agreed by 150 countries in 1992), the growing consensus on the threat of climate change, the adoption of the UN Millennium Development Goals (MDGs, and subsequent Sustainable Development Goals or SDGs) meant that the 15 CGIAR centers as they had become could not continue with ‘business as usual’.

Until the end of the 1990s, each center had followed its own research agenda. But it became increasingly clear that they would have to cooperate better with each other and with the national programs. And funding was being directed at specific donor-led interests.

There is no doubt that investment in the CGIAR over 50 years has brought about great benefits, economically and in humanitarian ways. Investment in crop genetic improvement has been the mainstay of the CGIAR, and although research on natural resources management (NRM, such as soils and water) has been beneficial at local levels, it has not had the widespread impact that genetic improvement has.

The impact of the CGIAR is well-documented. Take this 2010 paper for example. Click on the image for more information.

My good friend from the University of Minnesota, Professor Phil Pardey and two colleagues have calculated the economic benefits of CGIAR to be worth about 10 times the cost. Impressive. Click on the image below for more information.

I have watched a couple of decades of CGIAR navel gazing as the system has tried to ‘discover’ the best modus operandi to support national programs and the billions of farmers and consumers who depend on its research outputs.

There’s no doubt these changes have increased bureaucracy across the CGIAR. One early development was the introduction of 3-year rolling Medium Term Plans with performance targets (always difficult in agricultural and biological research), which led to perverse incentives as many centers set unambitious targets that would attract high scores and therefore guarantee continued donor support.

I did not favor that approach (supported by my DG), encouraging my colleagues to be more ambitious and realistic in their planning. But it did result in conflict with an accountant in the World Bank – a ‘bean counter’ – who had been assigned to review how the centers met their targets each year. I don’t remember his name. We had endless arguments because, it seemed to me, he simply didn’t understand the nature of research and was only interested if a particular target had been met 100%. Much as I tried to explain that reaching 75% or perhaps lower could also mean significant impact at the user level, with positive outcomes, he would not accept this point of view. 100% or nothing! What a narrow perspective.

A former colleague in the CGIAR Independent Evaluation Arrangement office in Rome and a colleague have written an excellent evaluation of this performance management exercise, warts and all. Click on the image below to access a PDF copy.

Now we have OneCGIAR that is attempting to make the system function as a whole. Very laudable, and focusing on these five highly relevant research initiatives. Click on the image below for more information.

What I’m not sure about are the levels of management that the new structure entails: global directors, regional directors, program or initiative leaders, center directors (some taking on more than one role). Who reports to whom? It seems overly complicated to my simple mind. And there is certainly less emphasis on the centers themselves – despite these being the beating heart of the system. It’s not bureaucrats (for all their fancy slogans and the like) who bring about impacts. It’s the hard-working scientists and support staff in the centers.


Nevertheless, looking back on 50 years, I feel privileged to have worked in the CGIAR. I didn’t breed a variety of rice, wheat, or potatoes that were grown over millions of hectares. I didn’t help solve a water crisis in agriculture. But I did make sure that the genetic resources of potato and rice that underpin future developments in those crops were safe, and ready to be used by breeders whenever. I also helped IRRI get back on its feet, so to speak, and to survive.

And along the way, I did make some interesting contributions to science, some of which are still being cited more than four decades later.

I’m more than grateful for the many opportunities I’ve been afforded.


 

Eat ’em to conserve ’em . . .

That’s right. Eat ’em to conserve ’em. Sounds counter-intuitive? Well, the answer is not what you might expect.

On a recent BBC Two program [1], Lisa, a pig breeder from North Yorkshire of rare—and very hairy—Hungarian Mangalica pigs, told one of the presenters (who’d wondered if he might turn vegetarian after seeing the cuteness of Mangalica piglets): “We need you to eat the meat, because if you don’t eat the meat, then farmers won’t breed them, and that’s how you lose them“.

Regular viewers of BBC One’s Countryfile (broadcast on Sunday evenings) will be familiar with the preservation of rare breeds in the UK. One of the presenters is Cotswold farmer Adam Henson, whose father Joe founded the Rare Breeds Survival Trust (RBST) in 1973. The RBST supports the UK National Livestock Gene Bank where semen and embryos are stored.

Joe Henson also set up the Cotswold Farm Park in 1971 on his farm near Guiting Power that Adam and his business partner continue to run, where the public can see different breeds of cattle, sheep, pigs, horses, and poultry, most of which no longer play any significant role in commercial agriculture. They only survive because of the interest and efforts of farmers like Adam and the RBST. While preservation of rare breeds is one of Adam’s passions, he frequently acknowledges that they have to pay their way. So, for many farmers like pig breeder Lisa, keeping rare breed livestock is a commercial enterprise. And there is a growing interest in and demand for rare breed meat.


What are the parallels in crops?

For decades now crops (and their wild relatives) have been conserved in genebanks around the world. Scientists in the 1960s acknowledged that unless these crop varieties were collected they might be lost forever. So the good news is that important genebank collections were established, crop varieties and diversity preserved, and used to create more productive varieties for farmers to grow.

Conservation in genebanks or seed banks (often referred to as ex situ conservation, and the plant equivalent of semen and egg or embryo storage) ensures that genetic diversity is protected over the long term, subject of course to the best genebank management practices.  However, there are crops, like potatoes that reproduce vegetatively by tubers (important for maintaining specific varietal identity), and others that either don’t produce seeds, or which are short-lived and cannot be stored in a seed bank.

In the UK there are several important genebank collections: the Commonwealth Potato Collection (CPC) at the James Hutton Institute, Dundee; the Germplasm Resource Unit (GRU, with important collections of wheat, barley, oat, and pea) at the John Innes Centre in Norwich; and the UK Vegetable Genebank (UKGVB) at the Warwick Crop Centre, Wellesbourne.

And the centers of the CGIAR around the world manage some of the largest and genetically most diverse genebank collections anywhere. I have been involved with two of these: for rice at the International Rice Research Institute, in Los Baños, in the Philippines, and for potatoes at the International Potato Center, in Lima, Peru. The Svalbard Global Seed Vault provides an extremely important safety backup to these and many national genebank collections.


However, what is the situation on farms? Do farmers continue to grow the varieties that have sustained their communities for generations? Is it feasible to conserve varieties on farm? And how many would opt to grow new varieties if these were available?

Just like livestock, crop varieties can only survive if farmers continue to care for them, and they are consumed. Eat ’em to conserve ’em.

Now many of these farmer varieties (often referred to as landrace or ‘heirloom’ varieties) are found in subsistence farm systems where the full impact of modern bred varieties has yet to be felt.

Take the situation of rice in the northern part of Laos in southeast Asia, for example. Many of the rice varieties grown there are upland rices, and modern rice breeding has produced fewer improved varieties for these agricultural systems. Farmers (many of them women) continue to grow hundreds of rice varieties. While I was head of genetic resources at the International Rice Research Institute in the Philippines during the 1990s, I spear-headed an international project to collect and conserve these varieties in Laos and many other countries, and one of my colleagues, Dr Seepana Appa Rao spent five years in Laos assisting local scientists there.

‘Heirloom’ rice varieties are an important cultural foundation of many societies throughout Asia (and Africa). But farmers need to make a living, aspire to a better life, producing food for their families, and generate income if possible to pay for their children’s education. Many farmers want something better than the drudgery of agriculture for their children.

Is it possible to make a profitable living from these varieties? What are the opportunities to make the old varieties more commercially appealing? To commodify them. Certainly if these traditional varieties could generate an income, then farmers would be more willing to grow them. And, in the process, fulfill an important objective of on-farm or in situ conservation in a sustainable manner, rather than having to rely on farmer-conservators or subsidies (which can always be taken away).

Nollie Vera Cruz

The Heirloom Rice Project (HRP) was a collaboration between the Philippines Department of Agriculture and the International Rice Research Institute (IRRI, coordinated by my former colleague, Dr Casiana ‘Nollie’ Vera Cruz) to enhance the productivity and enrich the legacy of ‘heirloom’ or traditional rice through empowered communities in unfavorable rice-based ecosystems. It focused on traditional rice varieties found only in the Cordillera Region provinces of Ifugao, Mountain Province, Benguet, and Kalinga or northern Luzon island.

As explained in one website story, ‘heirloom’ rice varieties come in grains of astonishing colors: brown, black, pink, purple, and pearly white; fragrant, nutty in taste, high in fiber; healthy to eat; a gourmet’s delight. Yet for all their captivating look and taste, they thrive in the most fragile places, on mountain tops, where dew, rain, and air are their only means of sustenance. 

Rice terraces at Banaue, Ifugao Province, Philippines.

Furthermore . . . ‘heirloom’ rice varieties have been grown on the terraces of the Cordillera Mountains of Luzon, Philippines [for centuries], terroirs known for their significant historical, cultural, and aesthetic values. However, heritage ‘heirloom’ rice farming is gradually being abandoned, mainly because of its lower productivity and the struggle of the sector to create a sustainable niche market for heirloom rice by branding its cultural, social, and nutritional values.

One of the important outcomes was to link farmers with markets so that these special rice varieties could find a particular niche in the market, even exported during the course of the project to the USA. And it’s those linkages that were so important.


Let’s now to cross to South America where there is a wealth of potato varieties grown throughout the Andes of Peru and Bolivia in particular, mainly (until now) for home consumption.

As I have seen for myself, as long ago as 1974 near Cuzco in southern Peru, farmers successfully combined the cultivation of commercial varieties for the market while cultivating the ‘old’ varieties in small plots close to the farmstead, the basis of household food security.

In this photo, northwest of Cuzco, large commercial plantings of improved varieties can be seen in the distance, while inside the wall surrounding the farmstead only native varieties were grown.

Have farmers found a way to make these ‘heirloom’ varieties more commercial? Well, there’s a very interesting initiative in Peru that has spread across quite a large part of the country.

Potato farmers have formed AGUAPAN(Asociación de Guardianes de la Papa Nativa del Centro del Perú) that is supported by Grupo Yanapai, an NGO that has considerable experience in participatory research.

Farmers commercialize their varieties directly to households in Lima, even delivered directly to the door, as mixtures (chaqru) under the trade name Miski Papa.

What is particularly interesting about the project is that individual farmers are identified, and the commercialization strategy is geared towards understanding their roles and the varieties they grow. See how Sra. Guerrero grows 180 different varieties!

Now look at these other photos (on AGUAPAN’s Facebook page) showing different farmers and their varieties.

AGUAPAN has taken the opportunity to increase farmer incomes through this project and at the same time ensuring farmers continue to grow ‘heirloom’ varieties. There is an interesting paper published in 2021 by a former colleague of mine at CIP, Andre Devaux (and others) that describes how these potato varieties have become a culinary sensation and a market innovation.


These two projects on rice and potatoes (there must be more around the world on the same and other crops) show how two objectives can be met:

  • Enhancement of farmer livelihoods through market innovations with native ‘heirloom’ varieties;
  • On-farm (in situ) conservation that permits the dynamics of farmer management to prosper, and exposing genetic diversity to environmental challenges, so important under a changing climate.

Personally, until now, I have had some doubts about the wisdom of prioritizing on-farm conservation for crop genetic resources. Certainly in the 1990s there was quite a push to promote in situ conservation, and in the rice biodiversity project that I referred to at the beginning of the post, we learned a great deal about the choices farmers make on a daily basis. And that is what on-farm conservation should be all about: allowing farmers to make informed choices, to change their varieties, to discard some, adopt others. Even though some farmers take on a role of conservators, I’ve never believed that subsidies paid to farmers to ‘conserve’ their varieties was a viable, long-term option. With the commercialization initiatives I’ve described here, there are now excellent opportunities to ensure the long-term survival of ‘heirloom’ varieties in the systems where they originated.

Eat ’em to conserve ’em!


[1] The Hairy Bikers Go North, Episode 4 North Yorkshire (not available everywhere), just before three minutes, first broadcast on 14 October 2021.

 

 

Leaving academia . . . heading east

28 June 1991. It was a Friday. Ten years and three months since I joined the University of Birmingham as a Lecturer in Plant Biology. And it was my last day in that post. A brief farewell party in the School of Biological Sciences at the end of the day, and that was it. I was no longer an academic.

I’d left Peru in March 1981 with such enthusiasm for the next stage of my career at Birmingham. Having spent the previous eight years and three months in South and Central America with the International Potato Center (CIP), Steph and I were looking forward to setting up home with our daughter Hannah (then almost three) back in the UK. I joined the university on 1 April. Was I the fool?

By the end of the 1980s, however, my enthusiasm for academia had waned considerably. Not that I wasn’t getting on. Far from it. I was about to be promoted to Senior Lecturer, I had an active research group (looking at the relationships between crop plants and their wild species relatives), and I enjoyed teaching.

But I began to get itchy feet, and when the opportunity arose (in September 1990) for a move to the Philippines, to join the International Rice Research Institute (IRRI) as Head of the newly-established Genetic Resources Center (with its mandate to manage the world’s largest and genetically most important genebank for rice), I didn’t hesitate. Although, I have to admit, Steph and our daughters (Philippa was born in 1982) were less keen on the idea.

In early January 1991, I was interviewed for the position at IRRI (at its research center in Los Baños, about 70 km south of Manila, the capital city of the Philippines)

This was only my second trip to Asia. I’m not sure how or why at this distance of 30 years, but I flew to Manila (MNL) with British Airways out of London-Gatwick (LGW). Having checked in, I was informed that the flight to Manila was delayed because of a fault with the assigned aircraft (a 747), and that it would be replaced by an incoming aircraft – from Miami, which wasn’t expected for at least five hours. In the end, the delay was almost 15 hours, and I arrived in Los Baños just after 1 am on the Monday morning, having set out from the UK early on Saturday, with the expectation of arriving in the Philippines with just under 24 hours to recover from my trip before the interview schedule began. In the end, I had less than four hours sleep, and was up for a 7 am breakfast meeting with Director General Klaus Lampe (right) and his three Deputy Directors General!

By the end of the month I’d agreed a three year contract. Lampe wanted me to start on 1 April. But, as I explained—and he reluctantly accepted—I still had teaching and examination commitments at the university that would take me up to the end of June. So the earliest I would be able to join the institute was 1 July.

Even so, Lampe asked me to represent IRRI at a genetic resources meeting held in April at the Food and Agriculture Organization of the United Nations (FAO) in Rome. That would be the first of many meetings at FAO and even more visits to Rome where the International Plant Genetic Resources Institute (IPGRI, now Bioversity International) also had its office.


I flew out to the Philippines on Sunday 30 June. With just one day between leaving Birmingham and heading east, I still had some final packing. And, in any case, I had to make sure that everything was ship shape and Bristol fashion for Steph and the girls, as we’d agreed I would head off to the Philippines on my own, in the first instance, get settled into my new job, and they would join me just after Christmas.

That last couple of days were quite stressful. My friend and close colleague at Birmingham, Brian Ford-Lloyd and his wife Pat dropped by on the Saturday to wish me Bon Voyage! Brian has often told me subsequently that I looked rather drained. After all it was quite a step to up sticks and move the family to the Philippines. But it was a move we have never regretted.

Steph and I also agreed that we wouldn’t rent out our home in Bromsgrove (in northeast Worcestershire, and about thirteen miles south of Birmingham), but keep it locked up and safe in case we ever needed a bolt hole, as it were, should things not work out well at IRRI, or civil unrest required us to leave the country at short notice. Politics in the Philippines has always been volatile, to say the least.

So, come Sunday morning, it was a teary goodbye for all of us when the taxi arrived to take me to Birmingham airport (BHX) for the flight to MNL via London Heathrow (LHR) and Hong Kong (HKG). In subsequent years, and for a decade until Emirates had daily flights from BHX to Dubai (DXB) and on to MNL, we always flew with KLM via Amsterdam (AMS), much more convenient than transiting through LHR. Apart from our first home leave in the summer of 1992.

British Midland (now defunct) operated the connecting flight from BHX to LHR. Placing my two or three bags on the scales, the check-in agent told me that I was way over my allowance, and if I chose to check them through to MNL, then she would have to charge me £500. On the other hand, she could send them to LHR free of charge, and I could argue with my next carrier, British Airways, for the onward flight. She checked my schedule and we agreed there was more than sufficient time between landing in LHR and the departure of my HKG flight to pick up my bags in Terminal 1 and get to Terminal 4 to check-in for the HKG/MNL flight. Wrong!

The flight left BHX on time, but on landing at LHR we taxied to the perimeter of the apron because gates were either occupied or undergoing refurbishment. And there we sat for about 30 minutes until buses came along to take us to the terminal. All the while, my connection time was being eroded by the minute. Then I had to wait for my bags to offload, and for the bus to Terminal 4. On previous transits through LHR between terminals, the bus had always crossed to the other side of the airport where Terminal 4 is located through a tunnel, a journey of a matter of minutes. Not that day, however. Our bus headed out on to the public roads, hit the M25 then exited close to Terminal 4. By the time I reached the back of a check-in queue for my flight, it was due to depart in just five minutes. Panic stations!

Leaving my bags where they were, I politely walked to the front of the queue explaining to other waiting passengers my dilemma, and they kindly let me move to the front. I was in luck. The flight had been delayed by at least 30 minutes, and the agent reckoned I could still make it. What to do about the excess baggage charges? He agreed not to charge me the full amount, and after several attempts to charge my credit card, he waived the fees, told me to put the bags on an express shute, and RUN!

The aircraft door was closed immediately after I boarded and found the only empty seat in Business Class (my reserved seat having been reallocated), and we were off. I sat there, thanking my lucky stars that I’d made the flight after all, feeling rather sweaty, and hoping it wouldn’t be too long after take-off before the cabin crew brought round the drinks trolley and I could get stuck into my first G&T.


I don’t remember too much about the trip from that point. Not because of over-imbibing, I hasten to add. It was just uneventful. On arrival in Manila, I was greeted by Director of Administration Tim Bertotti (right) and his Vietnamese wife who would be my ‘welcomers’ for the next few weeks, show me the IRRI ropes, so to speak, and be a couple I could turn to for advice. Having collected my heavy bags, and found the IRRI driver we headed south to Los Baños, where I stayed in the IRRI Guesthouse for the next month or so until the house allocated to me had been redecorated.

I can’t deny that the first night in Los Baños was quite miserable. I was overwhelmed by a feeling of regret, whether I had made the right choice to give up a tenured position at the university (a number of colleagues there thought I was crazy to leave a tenured position for the ‘insecurity’ of short-term contracts overseas). And how would the family fare during the intervening six months until they headed east? So many questions, so many uncertainties. And hard to sleep because of jet-lag.


But the next morning there was no time for self pity. I had a job to do, and just get stuck in. A driver collected me from the Guesthouse after breakfast and took me down to the research center, less than a ten minute drive across the campus of the University of the Philippines-Los Baños (UPLB). I got my ID, was assigned a car, and made an appointment to meet with Klaus Lampe.

Jack Hawkes

Then it was off to GRC in the Brady Laboratory, a building named after IRRI’s second Director General, Nyle Brady. I was already aware that there was only measured enthusiasm among the GRC staff for my appointment. Three of us had been interviewed in January, all with MSc and PhD degrees from the University of Birmingham, and Professor Jack Hawkes had supervised our PhD research. The other two candidates already managed genebanks; I had no hands-on experience of genebank management. One of the candidates, a Chinese Malay national, had carried out his thesis research at IRRI (on rice of course) with my predecessor in the IRRI gene bank, Dr TT Chang, co-supervising his research. He was a known quantity for the GRC staff and, I think, their preferred candidate. Instead they got this straight-talking Brit.

First things first. I needed to understand in detail how the genebank was currently being managed, who the key personnel were, and what were their thoughts about how things might change. I also had to manage the merger of the genebank (known in 1991 as the International Rice Germplasm Center) with another group, the International Network for the Genetic Evaluation of Rice (INGER) that was coordinated by a senior Indian scientist, Dr Seshu Durvasula who, I’m sorry to say, had no intention of going along easily with the intended merger into GRC. He resented, I believe, that he had been overlooked for the leadership of GRC.  And, in any case, who was this British scientist with no rice experience?

Anyway, back to the genebank. I think the staff were quite surprised to be asked their opinions. That was not Dr Chang’s style. Thanks to Eves, Pola (who I quickly identified as someone to lead the genebank operations on a daily basis, as genebank manager), Ato, Tom, Soccie, the data management group (Adel, Myrna, and Vangie), and Yvette and Amy (who I assigned to wild species research) for being very patient, answering all my questions, and letting me know when one of my ideas was perhaps a step too far. But one thing was clear: the operations of the genebank had to be upgraded and made more efficient. After about six months I was ready to put a plan into operation. By then, Steph and the girls were ready to fly out to the Philippines to join me.

But I have to make special mention to two very special ladies, who made my first months at GRC (and IRRI in general) so much easier: the GRC secretaries Sylvia Arellano (L below) and Tessie Santos (R). Jewels in the IRRI crown.

Sylvia was my personal secretary, and had worked for TT Chang for a number of years before he retired. Tessie supported the other internationally-recruited scientist in the genebank, British geneticist Dr Duncan Vaughan, and the rest of the genebank staff as and when needed.

Sylvia (known as Syl to everyone) was a mine of information, knew exactly who to contact should I need to follow up on any issue, and was quick to advise me how to deal with colleagues (especially the old timers) with whom I had to work across the institute. She knew just how to get things done, call in favors, and the like. I reckon that without her day-to-day support my first few months at IRRI (before I knew the ropes or understood the institutional politics) would have been far less productive. I cannot thank her too much for all the support she gave me, and we remain in contact and good friends to this day, even though it’s eleven years since I retired from IRRI, and almost 25 years since she last worked with me.

When I was on home leave in the UK during the summer of 1997, I had a phone call from the then Director General, Dr George Rothschild, who asked ‘permission’ for Sylvia to move from my office to become Executive Secretary to the Director General. It was hardly an offer I could refuse, and in any case, it was a huge promotion for Syl. She remained as Executive Secretary to the DG until her retirement a few years back, serving under three DGs (possibly four) and an Acting DG.

Tessie was quite shy, and seemed rather in awe of me. But she was a valued member of the GRC staff, and on those occasions when Syl was away from the institute, Tessie would admirably step into her shoes as my personal secretary. After a few months and once she got used to me, Tessie began to relax in my presence. Tessie was just the sort of staff member that IRRI should be proud of: hard-working, loyal, knowledgeable. And it was my good fortune that Syl had someone like Tessie to back her up.


By the end of 1991, I was very much at home at IRRI. I had a good relationship with Klaus Lampe (well, for the next couple of years or so), I had the measure of my immediate boss, Deputy Director General for International Programs, Dr Fernando ‘Nanding’ Bernardo for whom, I’m sad to relate, I didn’t have much time, and I was moving ahead with plans for the upgrade of the genebank, and reorganization of the staff. It felt like the world was my oyster, and I looked forward to the coming year with the family in Los Baños as well.

Originally thinking that I’d remain at IRRI for perhaps a couple of three-year contracts, but certainly no longer than ten years, when I retired at the end of April 2010 I’d been at IRRI for almost 19 years. Joining IRRI was the best career move I made.


Getting the message out about genetic resources

For much of my career, I have taken a keen interest in science communication. Such that, a couple of years after I’d become IRRI’s Director for Program Planning & Coordination in 2001, I was asked to take on line management responsibility for several of IRRI’s administrative units, including the Communication and Publications Services (CPS) headed by my good friend Gene Hettel. My job changed to some degree, as did my title: Director for Program Planning & Communications.

I’ve always felt that scientists have a responsibility to explain their work to the general public in plain language. We’re fortunate here in the UK; there are several leading lights in this respect who have made their mark in the media and now represent, to a considerable extent, ‘the face of science’ nationally. None of them is shy about speaking out on matters of concern to society at large.

Sir David Attenborough (far left, above) is one of the world’s leading advocates for biodiversity conservation who also eloquently explains the threat and challenges of climate change. Professors Alice Roberts (second left, of The University of Birmingham) and Brian Cox (second right, The University of Manchester) have both made their mark in TV broadcasts in recent years, bringing fascinating programs covering a range of topics to the small screen. And then again, there’s Sir Paul Nurse (far right), Director of the Francis Crick Institute in London and former President of the Royal Society. I was particularly impressed with his Richard Dimbleby Lecture, The New Enlightenment, on the BBC in 2012 about his passion for science. It’s well worth a watch.


I would never claim to be in the same league as these illustrious scientists. However, over the years I have tried—in my small way—to raise awareness of the science area with which I am most familiar: plant genetic resources and their conservation. And in this blog, I have written extensively about some of my work on potatoes at the International Potato Center in Peru and on rice at the International Rice Research Institute in the Philippines, as well as training genetic resources scientists at the University of Birmingham.

So, when I was approached a few weeks ago to be interviewed and contribute to a podcast series, Plant Breeding Stories, I jumped at the chance.

The podcasts are hosted by Hannah Senior, Managing Director of PBS International, a world leading company in pollination control. So far, there have been eleven podcasts in two series, with mine broadcast for the first time just a couple of days ago. In this clip, Hannah explains the rationale for the series.

Just click on the image below to listen to our 35 minute conversation about genetic resources, genebanks, and their importance for plant breeding and food security. Oh, and a little about me and how I got into genetic resources work in the first place.

I hope you find the podcast interesting, and even a little bit enlightening. A transcript of the broadcast can be downloaded here. Thanks for listening.


I never aspired to be an academic

If, in the summer of 1970, someone had told me that one day I would be teaching botany at university, I would have told them they were delusional. But that’s what happened in April 1981 when I was appointed Lecturer in Plant Biology at the University of Birmingham. Hard to believe that’s already 40 years ago today. I stayed at Birmingham for a decade.

Birmingham is a campus university, one of the first, and also the first of the so-called ‘redbrick‘ universities. The campus has changed radically in the 30 years since I left, but many of the same landmarks are still there. The beauty of the campus can be appreciated in this promotional video.


I never, ever had any pretensions to a life in academia. As an undergraduate studying for a combined degree in Environmental Botany and Geography at University of Southampton between 1967 and 1970, I was a run-of-the-mill student. It wasn’t that I had little enthusiasm for my degree. Quite the contrary, for the most part. I enjoyed my three years at university, but I did burn the candle more at one end than the other. Also, I didn’t really know (or understand) how to study effectively, and no-one mentored me to become better. And it showed in my exam results. So while I graduated with a BSc (Hons.) degree, it was only a Lower Second; I just missed out, by a couple of percentage points, on an Upper or 2(i) degree. Perhaps with a little more effort I could have achieved that goal of a ‘better degree’. Que será . . .

However, about halfway through my final year at Southampton, I applied to Birmingham for a place on the recently-established graduate MSc course on Conservation and Utilisation of Plant Genetic Resources (CUPGR) in the Department of Botany. And the rest is history, so to speak.

I was interviewed in February 1970 and offered a place, but with no guarantee of funding. It wasn’t until late in the summer—about a couple of weeks before classes commenced—that the head of department, Professor Jack Hawkes phoned me to confirm my place (notwithstanding my ‘poor’ degree) and that he’d managed to squeeze a small grant from the university. It was just sufficient to pay my academic fees, and provide an allowance of around £5 per week (about £67 at today’s value) towards my living expenses.

So, in early September 1970 I found myself in Birmingham alongside four other MSc candidates, all older than me, from Nigeria, Pakistan, Turkey, and Venezuela, excited to learn all about plant genetic resources. I discovered my study mojo, redeeming myself academically (rather well, in fact), sufficient for Jack Hawkes to take me on as one of his PhD students, even as I was expecting to move to Peru to join the newly-established International Potato Center (CIP) in Lima. And that’s what I did for the rest of the decade, working in South and Central America before returning to Birmingham as a member of staff.


The years before Birmingham
I spent over eight years with CIP, between January 1973 and April 1976, working as an Associate Taxonomist in Lima, and helping to manage the multitude of potato varieties in the center’s field genebank, participating in collecting trips to different parts of Peru to find new varieties not already conserved in the genebank, and continuing research towards my PhD.

In the meantime, my girlfriend Stephanie (who I met at Birmingham) and I decided to get married, and she flew out to Peru in July 1973. We were married in Lima in October [1].

In May 1975, Steph and I returned to Birmingham for six months so I could complete the residency requirements for my PhD, and to write and defend my thesis. We returned to Lima by the end of December just after I received my degree.

From April 1976 and November 1980, Steph and I lived in Costa Rica in Central America on the campus of the regional agricultural research center, CATIE, in Turrialba, a small town 62 km due east of the capital, San José.

I had joined CIP’s Regional Research Department to strengthen the regional program for Mexico, Central America and the Caribbean. In 1976, the regional headquarters were in Toluca, Mexico where my head of program, Oscar Hidalgo lived. After he moved to the USA for graduate studies in 1977, CIP’s Director General, Richard Sawyer, asked me to take on the leadership of the regional program, and that’s what I did for the next four years, with an emphasis on breeding potatoes adapted to hot tropical environments, seed systems, bacterial disease resistance, and regional program development.

By November 1980 I felt it was time to move on, and requested CIP to assign me to another program. We moved back to Lima. However, with one eye on life beyond CIP, and with a growing daughter, Hannah (born in April 1978, and who would, in the next couple of years, be starting school) I also began to look for employment opportunities in the UK.


Looking for new opportunities
Towards the end of 1980 (but before we had returned to Lima) I became aware that a new lectureship was about to be advertised in the Department of Plant Biology (formerly Botany, my alma mater) at Birmingham. With the retirement of Jack Hawkes scheduled for September 1982, the lectureship would be recruited to fill an anticipated gap in teaching on the CUPGR Course.

I sent in an application and waited ‘patiently’ (patience is not one of my virtues) for a reply to come through. By the end of December (when we were already back in Lima, and in limbo so to speak) I was told I was on a long short list, but would only proceed to the final short list if I would confirm attending an interview in Birmingham (at my own expense) towards the end of January 1981. So, nothing ventured, nothing gained, and with the encouragement of the Dr Sawyer (who promised to keep a position open for me if the Birmingham application was unsuccessful) I headed to the UK.

Since completing my PhD in 1975, I had published three papers from my thesis, and a few others on potato diseases and agronomy. Not an extensive publication list by any stretch of the imagination, compared to what might be expected of faculty candidates nowadays. In reality my work at CIP hadn’t led to many scientific publication opportunities. Publications were not the be-all and end-all metric of success with the international centers back in the day. It’s what one achieved programmatically, and its impact on the lives of potato farmers that was the most important performance criterion. So, while I didn’t have a string of papers to my name, I did have lots of field and managerial experience, I’d worked with genetic resources for a number of years, and my research interests, in taxonomy and biosystematics, aligned well with the new position at Birmingham.

I interviewed successfully (eminent geneticist Professor John Jinks chairing the selection panel), and was offered the lectureship on the spot, from 1 April. The university even coughed up more than half the costs of my travel from Peru for interview. Subject to successfully passing a three-year probation period, I would then be offered tenure (tenure track as they say in North America), the holy grail of all who aspire to life in academia.


Heading to Birmingham
Saying farewell to CIP in mid-March 1981, and after more than eight happy years in South and Central America, Steph, Hannah, and I headed back to the UK via New York, where I had to close our account with Citibank on 5th Avenue.

Steph and Hannah at the top of the Empire State Building

This was just a couple of weeks or so before I was due to begin at Birmingham. We headed first to Steph’s parents in Southend-on-Sea. Since we had nowhere to live in Birmingham, we decided that I should move there on my own in the first instance, and start to look for a house that would suit us.

A few months before I joined Plant Biology, the department had recruited a lecturer in plant biochemistry, Dr John Dodds, a few years younger than me (I was 32 when I joined the university). John and I quickly became friends, and he offered me the second bedroom in his apartment, a short distance from the university.

The search for a house didn’t take long, and by mid-April we’d put in an offer on a house in Bromsgrove, some 13 miles south of the university, which was to remain our home for the next 39 years until we sold up last September. We moved in at the beginning of July, the day before I had to go away for the following two weeks as one of the staff supervising a second year undergraduate ecology field trip in Scotland. Not the most convenient of commitments under the circumstances. But that’s another story.


I start teaching
So, 40 years on, what are my reflections on the decade I spent at Birmingham?

It was midway through the 1980-81 academic year when I joined the department. I spent much of April settling in. My first office (I eventually moved office three times over the next decade) was located in the GRACE Lab (i.e., Genetic Resources and Crop Evolution Lab) where the CUPGR MSc students were based, in the grounds of Winterbourne House, on the edge of the main university campus, and about ten minutes walk from the department.

The GRACE Lab

The lab had been constructed around 1970 or so to house the Botanical Section of the British Antarctic Survey (before it moved to Cambridge). One other member of staff, Dr Pauline Mumford (a seed physiologist, on a temporary lectureship funded by the International Board for Plant Genetic Resources – now Bioversity International) also had her office there.

Pauline Mumford (standing, center) with the MSc Class of ’82 (my first full year at Birmingham) from (L-R) Malaysia, Uruguay, Germany, Turkey, Bangladesh (x2), Portugal, and Indonesia.

By September, an office had been found for me in the main building. This was necessary since, unlike Pauline, I had teaching commitments to undergraduate students on the honours Biological Sciences degree course, as well as having undergraduate tutees to mentor and meet with on a regular basis.

As I said, I’d been recruited to take over, in the first instance, Jack Hawkes’ teaching commitments, which comprised a contribution to the second year module in plant taxonomy, and evolution of crop plants, one of the main components of the CUPGR course. There were also opportunities to develop other courses, and in due time, this is what I did.

At the end of April 1981, Jack called me into his office, handed me his taxonomy lecture notes and said ‘You’re up tomorrow morning’. Talk about being thrown in the deep end. Jack lectured about ‘experimental taxonomy’, patterns of variations, breeding systems and the like, and how taxonomic classification drew on these data. Come the next day, I strode into the lecture theater with as much confidence as I could muster, and began to wax lyrical about breeding systems. About half way through, I noticed Jack quietly walk into the room, and seat himself at the back, to check on how well I was doing (or not). That was one of his mentor roles. He was gone before I’d finished, and later on he gave me some useful feedback—he’d liked what he had seen and heard.

But the lecture hadn’t nearly taken place. One of my colleagues, Dr Richard Lester, who was the lead on the taxonomy module, blithely informed me that he would be sitting in on my lecture the next day. ‘Oh no, you’re not‘ I emphatically retorted. I continued, ‘Walk in and I stop the lecture’. I had never really seen eye-to-eye with Richard ever since the day he had taught me on the MSc Course. I won’t go into detail, but let me say that we just had a prickly relationship. What particularly irked me is that Richard reported our conversation to Jack, and that’s why Jack appeared the next day.

I had quite a heavy teaching load, compared to many of my colleagues, even among those in the other three departments [2] that made up the School of Biological Sciences. Fortunately, I had no first year teaching. Besides my second year plant taxonomy lectures, I developed a small module on agroecosystems in the Second Year Common Course (of which I became chair over the course of the decade).

In their final year, students took four modules each of five weeks (plus a common evolution course). My long-time friend Brian Ford-Lloyd and I developed a module on plant genetic resources. Besides daily lectures, each student had to complete a short research project. I can’t deny that it was always a challenge to come up with appropriate projects that would yield results in such a short period. But I found working alongside these (mostly enthusiastic) students a lot of fun.

Dave Astley

Each year I’d take the group a few miles down the road to the National Vegetable Gene Bank (now the UK Vegetable Genebank) at Wellesbourne, where we’d meet its Director, Dr Dave Astley (who had completed his MSc and PhD, on potatoes with Jack Hawkes at Birmingham). It was a great opportunity for my students to understand the realities of genetic conservation.

I taught a 25 lecture course to the MSc students on crop diversity and evolution, with two practical classes each week during which students would look at as wide a range of diversity as we could grow at Winterbourne (mostly under glass). In this way, they learned about the taxonomy of the different crops, how diversity had developed, their breeding systems, and the like. The practical classes were always the most challenging element to this course. We never knew until each class just what materials would be available.

In 1982, I took a group of students to Israel for a two week course on genetic resources of the eastern Mediterranean. Not all of that year’s intake, unfortunately, as some came from countries that banned travel to Israel.

I developed a module on germplasm collecting, and in the summer months set some field exercises on a synthetic barley population comprising up to ten varieties that differed morphologically, and also matured at different times, among other traits. We would sample this population in several ways to see how each method ‘captured’ the various barleys at the known frequency of each (obviously I knew the proportions of each variety in the population).

The functioning of agroecosystems was something I’d been drawn to during my time in Costa Rica, so I passed some of that interest on to the MSc group, and helped out on some other modules like data management. And I became the Short Course Tutor for students who came to Birmingham for one or other of the two taught semesters, or both in some instances. Looking after a cohort of students from all over the world, who often had limited language skills, was both a challenge and a worthwhile endeavour. To help all of our MSc and Short Course students we worked with colleagues in the English Department who ran courses for students with English as a second language. Each member of staff would record a lecture or more, and these would be worked up into an interactive tutorial between students, ourselves, and the English staff. Once one’s lectures have been pulled apart, it’s remarkable to discover just how many idiomatic phrases one uses quite casually but which mean almost nothing to a non-native speaker.

Each MSc student had to write a dissertation, examined in September at the end of the year (just as I had on lentils in 1971), based on research completed during the summer months after sitting the written exams. Over my decade with the course, I must have supervised the dissertations of 25 students or more, working mainly on potatoes and legumes, and leading in some cases to worthwhile scientific publications. Several of these students went on to complete their PhD under my supervision often in partnership with another research institute like CIP, Rothamsted Experiment Station (now Rothamsted Research), MAFF plant pathology lab in Harpenden, and the Food Research Institute in Norwich.

2020-06-27007

With PhD students Ghani Yunus (from Malaysia) and Javier Francisco-Ortega (from Spain-Canary Islands).

The course celebrated it 20th anniversary in 1989, and among the celebrations we planted a medlar tree (sadly no longer there) in the Biological Sciences quadrangle.

Left of the tree: Professor Smallman, Jim Callow, Trevor Williams, Jack Hawkes. Right of the tree: Mike Jackson, Richard Lester, Mike Lawrence. And many students, of course.


Tutees
Earlier, I mentioned that at the beginning of each academic year every staff member was assigned a group of students (the annual intake then was more than 100 students, and is considerably larger today) as tutees, with whom we would meet on a regular basis. These tutorial sessions, one-on-one or in a small group, were an informal opportunity of assessing each student’s progress, to set some work, and overall to help with their well-being since for many, attending university would be the first time they were away from home, and fending for themselves. The tutorial system was not like those at the Oxbridge colleges.

Most students flourished, some struggled. Having someone with whom to share their concerns was a lifeline for some students. I always thought that my tutor responsibilities were among the most important I had as a member of staff, and ensuring my door was always open (or as open as it could be) whenever a tutee needed to contact me. Not all my colleagues viewed their tutorial responsibilities the same. And I do appreciate that, today, with so many more students arriving at university, staff have to structure their availability much more rigidly, sometimes to excess.

In October 1981, my first final year tutee was Vernonica ‘Noni’ Tong* who went on to complete a PhD with my close colleague, geneticist Dr Mike Lawrence on incompatibility systems in poppies. Noni joined the Genetics Department and rose to become Professor of Plant Cell Biology (now Emeritus). Several others also went on to graduate work. Another, Julian Parkhill, graduated around 1987 or 1988, went on to Bristol for his PhD, and is now Professor of Veterinary Medicine at the University of Cambridge. He was elected a Fellow of the Royal Society in 2014.

I like to think that, in some way, I helped these students and others make wise career choices, and instilled in them a sense of their own worth. At least one former tutee (who completed her PhD at the University of Durham) has told me so, and that made it all worthwhile.


The School of Biological Sciences
In September 1982, Jack Hawkes retired from the Mason Chair of Botany, and a young lecturer, Jim Callow from the University of Leeds, was elected to the position. Jim took on the role of MSc Course leader, but the day-to-day administration fell to Brian Ford-Lloyd (as Tutor) and myself (for the Short Course students). Jim was a physiologist/ biochemist with an interest in biotechnology, but nothing about genetic resources. He also had little understanding (or sympathy, so I felt) for my areas of research and teaching interests. He frankly did not understand, so I never developed a good relationship with him.

Brian Ford-Lloyd

My closest colleague in the department was Brian who had been appointed to a lectureship around 1977 or 1978. He had completed his PhD in the department in 1973, and he and I were graduate students together until I moved to Peru. We became good friends, and this friendship has lasted until today. He also lived in Bromsgrove, and after I returned to the UK on retirement in 2010, Brian (now Professor Ford-Lloyd) and I would meet up every few weeks for a few beers at the Red Lion on Bromsgrove’s High Street, and to put the world to rights.

On reflection, I can say that relationships among the staff of Plant Biology were pretty harmonious, notwithstanding the comment I made earlier. But several staff were approaching retirement as well, so there was quite a change in the department when a couple of young lecturers were also appointed within a year of me, Drs John Newbury and Jon Green, both of whom also rose to professorships late in their careers.

Towards the end of the 1980s, the School of Biological Sciences underwent a fundamental reorganization, abandoning the federal system, and transforming into a single department with a unitary Head of School. Much to the chagrin of my friends and colleagues in Genetics, Jim Callow was selected as the first Head of School under this new arrangement. To replace the old four department structure, we organized ourselves into five research themes. I joined the Plant Genetics Group, moving my office once again closer to other group members. As a member of this group, I probably had two or three of the best years I spent at Birmingham, with Dr (later Professor) Mike Kearsey as my head of group.


Research and publications
My research interests focused on potatoes and legumes, often sustained by a healthy cohort of MSc and PhD students.

One project, funded by the British government from overseas aid budget in partnership with CIP, investigated the options for breeding potatoes grown from true potato seed. A project that we had to pull the plug on after five years.

In another, Brian and I worked with a commercial crisping (potato chips, in US parlance) company to produce improved potato varieties using induced somaclonal variation, leading to some interesting and unexpected implications for in vitro genetic conservation. There was also an interesting PR outcome from the project.

All in all, my group research led to 29 scientific papers in peer-reviewed journals, several book chapters, and a range of contributions to the so-called grey literature (not peer-reviewed, but nonetheless important scientifically). You can open a list of those Birmingham publications here.

I’m also proud of the introductory textbook on genetic resources that Brian and I wrote together, published in 1986. It quickly sold its print run of more than 3000 copies.

Then, in 1989, we organized a weekend conference (with Professor Martin Parry of the Department of Geography) on climate change, leading to the pioneer publication of the conference proceedings in 1990 [3] in this newly-emerged field of climate change science. Brian, Martin and I collaborated almost a quarter of a century later to edit another book on the same topic.

I was fortunate to undertake one or two consultancies during my years at Birmingham. The most significant was a three week assignment towards the end of the decade to review a seed production project funded by the Swiss government, that took us Huancayo in the Central Andes, to Cajamarca in the north, and Cuzco in the south, as well as on the coast. This was an excellent project, which we recommended for second phase funding, that ultimately collapsed due to the conflict with the terrorist group Shining Path or Sendero Luminoso that affected all parts of Peruvian society.

The seed project review team (L-R): Peruvian agronomist, me (University of Birmingham), Cesar Vittorelli (CIP Liaison), Swiss economist (SDC), Carlos Valverde (ISNAR, team leader)

With funding from the International Board for Plant Genetic Resources, one of my PhD students, Javier Francisco-Ortega was able to collect an indigenous legume species from his native Canary Islands in 1989, for his dissertation research. I joined Javier for three weeks on that trip.

Collecting escobon (Chamaecytisus proliferus) in Tenerife in 1989


All work and no play . . .
Each December, the Plant Biology Christmas party was usually held at Winterbourne House. For several years, we organized a pantomime, written and produced by one of the graduate students, Wendy (I don’t remember her surname). These were great fun, and everyone could let their hair down, taking the opportunity for some friendly digs at one staff member or another. In the photos below, I played the Fairy Godmother in a 1987 version of Cinderella, and on the right, I was the Grand Vizier in Aladdin, seen here with graduate student Hilary Denny as Aladdin. In the top left photo, kneeling on the right, and wearing what looks like a blue saucepan on his head, is Ian Godwin, a postdoc from Australia for one year. Ian is now Professor of Crop Science at the Queensland Alliance for Agriculture and Food Innovation. To Ian’s left is Liz Aitken, also a postdoc at that time who came from the University of Aberdeen, and now also a Professor at the University of Queensland.

Then, in the summer months, I organized a departmental barbecue that we held in Winterbourne Gardens, that were part of the department in those days, and now open to the public. In this photo, I’m being assisted by one of my PhD students, Denise Burman.

2020-06-27007 - Copy (2)


Moving on
So why did I leave in July 1991?

Professor Martin Parry

Towards the end of the 1980s I also became heavily involved in a university-wide initiative, known as Environmental Research Management or ERM, to promote the university’s expertise in environmental research, chaired by Martin Parry (I became the Deputy Chair). So, coupled with my own teaching, research, and administrative duties in Biological Sciences, I was quite busy, and on my way to promotion. I was doing all the ‘right things’, and working my way up the promotions ladder (competing with all other eligible staff in the Science Faculty). It was quite helpful that the Dean of the Science Faculty, Professor George Morrison (a nuclear physicist), and someone with his finger on the promotions pulse, also took a close interest in ERM, and I got to know him quite well.

When I handed in my resignation in March 1991, I knew that my application for promotion to Senior Lecturer was about to be approved (I was already on the Senior Lecturer pay scale). By then, however, life in academia had lost some of its allure. And Margaret Thatcher was to blame.

Around 1998 or 1989, the Thatcher government forced a number of ‘reforms’ on the universities, bringing in performance initiatives and the like, without which the government would not consider either increased funding to the system or pay increases for staff.

So we all underwent performance management training (something I became very familiar with during the next phases of my career). It was made clear that staff who were struggling (as teachers, researchers, or even with administration) would be offered help and remedial training to up their game. Those of us performing well (which included myself) were offered the opportunity to take on even more. It was a breaking point moment. With the increased emphasis on research performance and research income, I felt that my time in academia had almost run its course. My research interests did not easily attract research council funding. I was beginning to feel like a square peg in a round hole.

So, when in September 1990, a job advert for the position of head of the Genetic Resources Center at IRRI landed on my desk, I successfully threw my hat in the ring, and joined IRRI in July 1991, remaining there for the next 19 years, before retiring back to the UK in May 2010.

With few regrets I resigned and prepared for the move to the Philippines. I had to see my students (both undergraduate and MSc) through their exams in June before I could, with good conscience, leave the university. My last day was Friday 30 June, and Brian often reminds me that when he came round to our house in Bromsgrove to say goodbye and wish me well the following day, he was shocked at how white-faced and stressed I appeared. Well, it was a big move and I was leaving the family behind for the next six months, and heading off into the unknown to some extent. Early on Sunday morning I headed to Birmingham International Airport to begin the long journey east via London Heathrow.


But that’s not quite the end of my academic life. Not long after I joined IRRI, I was appointed Affiliate Professor of Agronomy at the University of the Philippines-Los Baños (UPLB). Then, with Brian, John Newbury, and colleagues at the John Innes Centre, we developed a collaborative research project looking at the application of molecular markers to study and manage the large rice germplasm collection at IRRI. I was appointed Honorary Senior Lecturer at Birmingham, and for several years when I was back on home leave I would visit the university and lecture to the MSc students on the realities and challenges of managing a large genebank, as well as following up on our research collaboration.

That came to an end when the funding ran out after five years, and I moved out of research and genebank management at IRRI into a senior management position as Director for Program Planning and Communications.

As Director for Program Planning and Communications, I had line management responsibility for (L-R) Communications and Publications Services (Gene Hettel), IRRI’s library (Mila Ramos), IT Services (Marco van den Berg), the Development Office (Duncan Macintosh), and Program Planning (Corinta Guerta).


Was I cut out for a life in academia? Yes and no. I think I fulfilled my duties conscientiously, and with some success in some aspects. I admit that my research contributions were not the strongest perhaps. But I did mostly enjoy the teaching and the interaction with students. I always felt that not enough weight was given to one’s teaching contributions. Back in the day research was the main performance metric, and increasingly the amount of research funding that one could generate. That was a bit of a treadmill. So while I mostly enjoyed my decade at Birmingham, I found the next nineteen years at IRRI far more satisfying. I had the opportunity to put my stamp on an important component of the institute’s program, bringing the genebank and its operations into the 21st century, and ensuring the safety and availability of one of the world’s most important germplasm collections. Having left genebanking behind in 2001, I then enjoyed another nine years as a member of the institute’s senior management team. And, on reflection, I think those management years gave me the most satisfaction of my career.


Roger Rowe

[1] Steph also worked at CIP as an Associate Geneticist assisting the head of department, Dr Roger Rowe (who co-supervised my PhD research), to manage the germplasm collection. Prior to joining CIP, Steph had been a research assistant with the Commonwealth Potato Collection (CPC) that, in those days, was housed at the Scottish Plant Breeding Station just south of Edinburgh. The CPC is now maintained at the James Hutton Institute west of Dundee.

[2] These were: Zoology & Comparative Physiology; Genetics; and Microbiology. With Plant Biology, the four departments were administratively semi-independent in a federal School of Biological Sciences, coming together to teach a degree in Biological Sciences, with specialisms in the component disciplines. All first year biologists took the same common course, as well as a multidisciplinary common course in their second year and an evolution course in the third and final year.

In 2000, the School of Biological Sciences merged with the School of Biochemistry to form the School of Biosciences. Then, in 2008, there was a much larger university-wide reorganization, and Biosciences became part of the College of Life and Environmental Sciences, one of five Colleges that replaced Faculties across the university.

[3] Jackson, M., B.V. Ford-Lloyd & M.L. Parry (eds.), 1990. Climatic Change and Plant Genetic Resources. Belhaven Press, London, p. 190.

* On 6 May 2021, it was announced that Noni had been elected as a Fellow of the Royal Society!

Fifty is a mature number . . .

I came across a tweet a few days ago from the International Potato Center (CIP, based in Lima, Peru), reminding everyone that the center will celebrate its Golden Jubilee later this year. Fifty years of successfully bringing improved potato and sweet potato varieties and enhanced technologies to the world!

And that got me thinking about the achievements of international agricultural research in general over the past half century, and even a little longer. Let me expand.

CIP’s founding Director General (1971-1991) was Dr Richard Sawyer who envisioned a regional research [network] and collaboration with researchers around the world to develop new technologies and innovations to improve food security. He was my first boss. I joined CIP in January 1973 (when it was still a small institute finding its feet), and just after it had become one of the first international agricultural research centers (often referred to as IARCs) sponsored by the nascent Consultative Group on International Agricultural Research or CGIAR.

CGIAR? As Bill Gates wrote in 2019: Never heard of CGIAR? You’re not alone. It’s an organization that defies easy brand recognition . . . It’s too bad that more people don’t know about CGIAR. Their work to feed our hungry planet is as important now as it’s ever been.

The CGIAR was founded on 19 May 1971 and also celebrates its 50th anniversary this year. It was set up as an informal organization of countries, international development agencies and private foundations [1] that cooperate in underwriting a network of independent, international agricultural research institutes, and originally co-sponsored by the World Bank, the Food and Agriculture Organization (FAO), the United Nations Development Program (UNDP), and the International Fund for Agricultural Development (IFAD).

The CGIAR has undergone a series of transformations since its founding and has, in my opinion, spent far too long navel gazing over the past 30 years about what its role should be—and those of the constituent centers—and how all that research effort could or should be organized. Goodness knows what the opportunity costs (and the actual costs) of interminable consultations, meetings, and the like have been.

Despite the organizational and funding bumps (and scientific challenges, sometimes failures) in the 50 year road, the CGIAR and the IARCs it supports have been incredibly successful. The return on investment in international agricultural research (particularly with regard to plant breeding) has been impressive, not only in monetary terms, but more crucially in terms of the numbers of people who were brought out of poverty or who avoided chronic food shortages.

Let me again quote Bill Gates: No other institution has done as much to feed our world as CGIAR.


Today, there are 15 IARCs in the CGIAR network in 14 (mainly tropical or sub-tropical) countries across the globe, although two, Bioversity International in Rome and the Centro Internacional de Agricultura Tropical (CIAT) in Cali, Colombia, have recently formed an Alliance under a single Director General and Board of Trustees.

Four of them pre-date the CGIAR, but were immediately adopted in 1971 once the CGIAR was up and running.

The oldest, at 61 years, is the International Rice Research Institute (IRRI), founded in 1960 [2] in the Philippines, where I happily (and productively) spent almost 19 years from 1991 to 2010. IRRI was responsible for the Green Revolution in Asia, releasing many high-yielding, short-strawed rice varieties (perhaps the most famous of which was IR8) that were widely adopted because they out-yielded the varieties that farmers were growing in the 1960s.

The International Wheat and Maize Improvement Center (known as CIMMYT by its Spanish acronym) is located just northeast of Mexico City, and was founded in 1966. It was the institutional home for many years of that pioneer of the Green Revolution and 1970 Nobel Peace Laureate, Dr Norman Borlaug.

Two regional centers, the International Institute of Tropical Agriculture (IITA, in Ibadan, Nigeria) and CIAT, were founded in 1967 in 1970, respectively. Unlike the crop specific mandates of IRRI and CIMMYT (on rice, wheat, and maize), these two centers had a broader ecogeographic focus on a range of crop and livestock systems.

The International Centre for Research in the Semi-Arid Tropics (ICRISAT, located in Hyderabad, India) was established in 1972, and along with CIP was adopted by the CGIAR that same year.

By 1980, there were 13 centers, and five more were added by 1990. There then followed a period of consolidation. Two centers in Ethiopia and Kenya working on livestock and animal diseases merged. A banana and plantain network in France was absorbed into the genetic resources institute (IPGRI, now Bioversity International) in Rome, and in 2002 another institute, ISNAR (in The Hague, Netherlands) was shut down.

So for the past decade and a half, the CGIAR system has stabilised around 15 centers, and to quote Bill Gates once again: . . . most referred to by their own confusing acronyms . . . leaving the uninitiated feeling as if they’ve fallen into a bowl of alphabet soup.

It was a privilege to work at CIP (1973-1981) and IRRI (1991-2010), over 27 years in total. And even while I was teaching at the University of Birmingham between 1981 and 1991, I retained research links with and visited CIP, and also carried out other consultancy work with it and other centers.


Much of the early CGIAR-sponsored research was directed towards increasing crop productivity, breeding new crop varieties that yielded better than existing varieties as I mentioned above in relation to rice. And delving into the large and impressive—and genetically diverse—genebank collections that the centers had set up as a safety net to preserve heritage varieties. There was increased adoption of new varieties by farmers seeking to improve their livelihoods, and old varieties had, in many instances, been cast aside. Who could question their desire to improve their lots, to feed their families, and send their children to school with the hope and expectation that education would help bring them out of poverty and a better life than as a subsistence farmer?

Then, in the 1980s and 1990s, more attention was focused on natural resources such as soils and water, and how these could be managed sustainably. And of course, lying at the heart of everything (which I’m bound to stress, given my background in conservation and use of plant genetic resources) are the eleven center genebanks, the largest and most important network of genebanks worldwide, safely conserving more than 760,000 samples (known as genebank accessions) of cereals, grain legumes, forages, tree species, root and tuber crops, and bananas. This network is supported in part through the Crop Trust.

By the 1990s the early CGIAR model of productivity-focused research was being challenged and, as I mentioned above, research was expanding on the sustainability of natural resources. Furthermore, even the role of international centers was being questioned, whether they were needed any longer. National programs were becoming stronger and less dependent on the international centers for resources and research support, although training of agricultural research professionals remained an important partnership outcome. The centers produce what are known as international public goods, having an impact across multiple locations and sites. The sharing of breeding lines and new varieties is perhaps one of the best examples. National program research is much more site specific.

The international framework within which the centers operated was also becoming more challenging. The Convention on Biological Diversity (CBD) came into force in 1993, followed by the International Treaty on Plant Genetic Resources for Food and Agriculture adopted in 2004. These directly affected how centers could maintain their collections of genetic resources and share them globally. On the financial front there was growing concern about the long-term funding to support these collections that has now been resolved, in part, by the intervention of the Crop Trust and its grants to support the center collections in perpetuity from the Endowment Fund.

Then, in September 2000, at its Millennium Summit, the United Nations General Assembly adopted the eight Millennium Development Goals (MDGs) setting out an ambitious agenda to be reached by 2015. A review of progress made in 2015—not as much as hoped for—culminated in the adoption of 17 Sustainable Development Goals (SDGs) by UN Member States.

Clearly the adoption of the MDGs, followed by the upgraded SDGs was something that the CGIAR could not ignore, it it wanted to remain relevant. Centers quickly set about explaining how CGIAR-supported researched aligned with and contributed towards achieving these important development goals.

Research across the CGIAR system was reorganized into a series of programs and other initiatives. In its latest reincarnation, One CGIAR is a dynamic reformulation of CGIAR’s partnerships, knowledge, assets, and global presence, aiming for greater integration and impact in the face of the interdependent challenges facing today’s world . . . providing scientific innovations for food, land and water systems. Here is an example how IITA . . . has participated in the unfolding plans and is strategically positioned to contribute to the One-CGIAR agenda in sub-Saharan Africa.

I should also add that, importantly, response to climate change (and its impact on agriculture and natural resources) has been an important element of the CGIAR agenda for many years now.

I don’t wish to sound cynical, but I think the jury is still out. The CGIAR hasn’t exactly covered itself in glory in its previous attempts to reorganize. When it comes to change management, it has, in my opinion, taken its collective eye off the ball in terms of the system’s greatest assets: the actual centers and their loyal staff. A former colleague recently shared with me a piece he’d written describing the various attempts to restructure the CGIAR over the years: A solid long-term programme of change management must be put in place which addresses the required culture change needed on merging institutions with long, proud histories and staff who may have served for decades becoming deeply steeped in a given institutional culture.


So, how was research organized and funded? The two are obviously not independent one from the other.

Back in the day, centers received block grants or ‘core’ funding (often referred to as ‘unrestrictive funding’) from donor countries and agencies through the CGIAR. Being independent of one another (and the CGIAR not having any legal identity then) centers set their own research agendas, reporting annually on what had been achieved (outcomes and impact being the name of the game) and how the funding had been spent. The enthusiasm for the IARC model in the 70s and 80s was reflected in the growth of support, and the expansion of the CGIAR agenda to include new centers.

But around the mid-90s, this funding model was under threat. Donors demanded more accountability for their funds, and to influence directly the actual research that centers carried out. They did this by resorting to competitive funding for defined and time-limited project grants, which also meant more time and effort to prepare, submit, and account (scientifically and financially) for these projects than centers had been accustomed to. But it was a model that was here to stay. Unrestricted funding is now almost a thing of the past.

When I left research in 2001 to become IRRI’s Director for Program Planning and Communications (DPPC) I took on responsibility for the institute’s research project portfolio. Not what we did; that was the role of the Deputy Director General-Research. My role, among other responsibilities, was to liaise with donors and keep them happy and, in doing so, grow the institute’s budget (which we did very successfully).

When centers were solely responsible, as it were, for their research agendas, they had to accommodate project funding into their research strategic plans—their research blueprints. But it’s important to emphasise that IARC research was never (or hardly ever) science for the sake of science. It was scientific research with a purpose, aimed at real-life issues and constraints. And it had to be the right science of the highest quality. Not that this lofty goal was always achieved.

When I arrived at IRRI in July 1991, its research was organized through the notoriously difficult matrix management, which does have its conceptual appeal. The research program had two axes: programs on one axis, and the contributing scientific divisions on the other. The programs set the research agenda, and the research divisions contributed the scientific expertise. Or, as another former colleague, and head of IRRI’s Plant Pathology Division, Tom Mew explained it (and here I paraphrase): the programs choose the right science (i.e., what needs to be done) and the divisions do the science right. What I soon realised was that at CIP (back in 1973) there was a form of matrix management, with the research arranged in Research Thrusts. But IRRI’s not-altogether-successful implementation of matrix management was probably the first real attempt to employ this approach. It depends on an equal balance (and some tension) between program leaders and division heads. And it was my perception that a couple of long-serving division heads didn’t take kindly to any ‘erosion’ of their influence under matrix management and therefore did not support its implementation as enthusiastically as one might have expected. I’ll say no more.

In this diagram, I have assigned illustrative percentage values of how each research division allocated its resources (particularly staff time) to each of the rice ecosystem-focused programs.

Just a few years later, as the CGIAR navel gazing began in earnest, the research agenda was being reformulated in system-wide programs, organized in a type of matrix management (read ‘centers’ for ‘divisions’) and involving many more players outside the CGIAR as full partners in the research. I should mention that healthy and extensive research partnerships between centers and other institutions had existed even from the early days. However, external players are now much more intimately involved in determining (and implementing) the research.


Since I’ve been retired for eleven years, I’ll be interested to see—from afar—how the CGIAR and its centers fare. While I feel that both have lost their way somewhat, I still have faith that the system will eventually come good, and bring about outcomes and impacts that were the signatures of the system’s heyday. Hopefully, there are better days ahead for international agricultural research. Whether that means another half century or less remains to be seen. Getting past the next decade will be challenge enough.


[1] The Bill & Melinda Gates Foundation is now one of the largest donors to the CGIAR.

[2] The agreement between the Government of the Philippines and the Ford and Rockefeller Foundations was signed on 9 December 1959. IRRI’s Board of Trustees met for the first time on 14 April 1960 and approved the institute’s constitution an by-laws. The 1960 date is often cited as the foundation date.

 

Exploring the mysteries of sex . . . and taking control!

I’ve been fascinated with sex (especially controlled sex) since my undergraduate days at the University of Southampton between 1967 and 1970. We were the socially permissive flower power generation.

But before you get too excited about this post’s content, I need to point out that, as a former botany student, I’m referring to sex among plants! And plant breeding. The real flower power!


Joe Smartt and Edgar Anderson

I guess it all started with two final year honours course on plant speciation (how different species evolve) and plant breeding, taught by geneticist Dr Joe Smartt. It was through the first that I discovered the beauty of introgressive hybridization (a mechanism that blends the gene pools of separate species; see a diagrammatic explanation in this post), a concept first expounded by another of my botanical heroes, Dr Edgar Anderson. And, there was this transformative book to dip into: Variation and Evolution in Plants (published 1950) by another great American botanist, G Ledyard Stebbins. In Joe’s introduction to plant breeding, we followed yet another classic text: Principles of Plant Breeding by American plant breeder and geneticist, Robert W Allard.

Trevor Williams

And when I moved to the University of Birmingham as a graduate student in September 1970, to study for a Master’s degree in plant genetic resources, Trevor Williams taught a fascinating course on plant variation, emphasising their breeding systems, and how understanding of these was important for the conservation and use of genetic resources. Much of my career subsequently was then spent studying variation and breeding systems in two important crop species, potatoes and rice, and a minor legume species, the grasspea.


Plants reproduce in the most weird and wonderful ways. If they didn’t, humanity’s days would be numbered. Where would we be if wheat and rice plants failed to produce their grains, the potato its underground treasure of tubers, or the banana those abundant hands of green fruits? No wonder in times past folks celebrated a Harvest Festival each autumn to give thanks for a successful harvest.

Beautiful acorns on the pedunculate oak, Quercus robur

You only have to look about you in late summer, as I did each day on my walks last year, to see Nature’s bounty all around—the consequence of plant sex. The trees and bushes were dripping with fruit—2020 was a mast year (as I have written about before). I don’t think I’ve seen such a year for acorns on the oak trees. And the chestnuts, hazels, and so many others. Such exuberant fecundity!


Have you ever looked closely at a ‘typical’ flower? Well, for the most part you can see the female pistil(s) comprising the style, stigma, and ovary, and the male stamens that carry the pollen.

However, there are many variations on this basic theme, different arrangements of the sex organs, even separate male and female flowers on the same plant (known as monoecy; maize is a good example) or separate plants (dioecy; holly). Differences in plant reproductive morphology promote self fertilization or cross fertilization. In addition, there is a host of physical and genetic mechanisms to promote or prevent self fertilization, as well as limiting sex between different species. All of this is aimed at ensuring a next generation of plants, and the one after that, and so on.

Plants attract a host of pollinators: visiting insects such as bees and moths, even some nectar-feeding marsupials and bats. I watched a remarkable sequence on David Attenborough’s latest blockbuster series, A Perfect Planet a few nights ago, about the fascinating pollination role of fig wasps.

Then I came across this tweet. Cockroaches of all creatures!

Wind pollination is a common feature of many grasses. However, several wheat and rice species, for example, promiscuously dangle their stamens apparently seeking cross fertilization. But they have often self fertilized before their flowers open. That’s not to deny that some cross pollination does occur in these species, but it’s generally the exception.

Some plants appear to reproduce sexually, but they have got around actual sex through a mechanism known as apomixis. These plants produce seeds but not following the normal fertilization process, so each seedling is a genetic copy of the ‘mother’ plant.

Berries on a diploid potato species, Solanum berthaultii

Other species have given up sex (almost) altogether, instead reproducing vegetatively with the ‘offspring’ being genetically identical (or essentially identical) to the mother plant. In others, like the potato, propagation is primarily through tubers. Yet, in the Andes especially where potatoes were first domesticated, many varieties are extremely sexually fertile, and produce berries rather like small tomatoes, although they are inedible. They contain lots of small seeds that we often refer to as true potato seed or TPS. In fact, in one experiment I observed at the International Potato Center (CIP) in Peru where I worked during the 1970s, a colleague of mine recorded a particular variety known as Renacimiento producing more than 20 t/ha of berries, in addition to about 20 t of tubers.


Anyway, I digress somewhat. During the years I was active scientifically (before I joined the ranks of senior management at the International Rice Research Institute in the Philippines, IRRI in the Philippines), I looked into various aspects of reproductive biology of several species.

In my doctoral research, carried out in the Andes of Peru, I investigated the breeding relationships between potato varieties with different numbers of chromosomes. The potato we consume almost on a daily basis (at least in my home) is known scientifically as Solanum tuberosum, and has four sets (48 in total) of chromosomes. It is what we call a tetraploid. Many other potato species have only two sets or 24 chromosomes, and are known as diploids. The tetraploid forms are mostly self fertile; diploids, on the other hand, have a genetic system of self incompatibility, and will only produce seeds if pollinated with pollen from a different genetic type.

This or similar system of self incompatibility is known from other species, like poppies for example. Anyway, the outcome is that ‘self’ pollen will not germinate on the stigma. The two images below (of various pollinations among wild potatoes), show a typical compatible pollination and fertilization event. Lots of pollen grains have stuck to the stigma, have germinated and grown the length of the style to reach the numerous ovules in the ovary.

In these next images, showing incompatible pollinations, few pollen grains remain on the stigma, not all germinated, and those that did, grew erratically. A few pollen tubes may reach the ovules but compared to the compatible pollinations, they are many fewer.


In the 1970s, one of my colleagues at CIP, Chilean breeder/agronomist Primo Accatino, championed the use of TPS as an alternative to propagation from seed tubers. One of the weak links, as it were, in any potato production cycle is the availability and cost of disease-free seed tubers. So TPS was seen as potentially fulfilling a gap in many developing countries that had neither the infrastructure nor staff to support seed potato production.

As I mentioned earlier, the common potato is a tetraploid with four sets of chromosomes, and this complicates the genetics and breeding. Breeding at the diploid level could be more straightforward. At least that was the hope and the challenge when I embarked on a project to produce TPS lines through inbreeding diploid potatoes and single seed descent. Funded by the British government, it involved scientists at the University of Birmingham (where I had joined the staff in 1981), the former Plant Breeding Institute in Cambridge, and CIP in Peru.

Was this just a pipe dream? Perhaps. Before developing the project concept, I’d had extensive discussions with my colleague at Birmingham, geneticist Dr Mike Lawrence who worked on self incompatibility in poppies (that has a similar genetic system to that in potatoes). His experience with poppies showed that if one tried long and hard enough, it was possible to break the self incompatibility.

Flowers of Solanum chacoense

We tried—and ultimately failed—closing the project after five years. We decided it would take just too much investment to make progress. If only we’d had available then what are now helping to transform potato breeding: self compatible diploid lines. At the end of the 1990s, scientists working at the USDA potato collection in Sturgeon Bay, Wisconsin identified self compatible lines in the widespread wild species Solanum chacoense. The Sli gene that confers self compatibility is apparently more widespread than previously thought, and has now been bred into diploid lines. Had we had those self compatible lines back in the 1980s, our work would have perhaps have reached a better conclusion.


When I moved to the Philippines in 1991 to head IRRI’s Genetic Resources Center (GRC), I had a collection of around 100,000 different lines of rice, cultivated and wild, to conserve in the institute’s International Rice Genebank.

With my colleagues in GRC, Dr Lu Bao-Rong, Amita ‘Amy’ Juliano and Dr Ma Elizabeth ‘Yvette’ Naredo, I spent several years investigating the breeding relationships between the cultivated forms of rice, Oryza sativa from Asia, and O. glaberrima from West Africa, and the closest wild Oryza species with a similar AA genome. We made thousands of crosses with the aim of understanding not only the breeding relationships, which is important to be able to better use wild species in rice breeding, but also to understand the taxonomy of wild and cultivated rices.

Pollinations (L) in the genebank screenhouse among AA genome species from Asia, Australia, and the New World, and (R) a crossing polygon from those pollinations expressed in terms of spikelet fertility.

This work led to several scientific publications, which you can access here: just look for publications with our names.


Another aspect of plant sex, important for genebank managers, is how the environment can affect plant fertility. While the seeds of many species (including rice and potatoes) can be stored at a low temperature (typically -18ºC) and for decades if not longer, it is essential that only the best seeds are placed in a genebank for long term conservation. That means ensuring that the growing conditions are the best possible to produce seeds of high quality—and in abundance—during an initial multiplication or later on for rejuvenation after some years of storage, if seed stocks are running low, or there are signs that seed viability may be declining.

At IRRI, in Los Baños south of Manila, we were faced with managing a large germplasm collection of rice lines from all over Asia, from Africa, and South America as well. And these had been collected over a very broad latitudinal range, while Los Baños sits at around 14ºN. We were attempting to grow in a single location many different rice lines, some of which had evolved under more temperate conditions, under different temperature regimes and daylengths.

Kameswara Rao

With my colleague Dr Kameswara Rao (and Professor Richard Ellis from the University of Reading, UK) we spent three years carefully analyzing the effects of different growing environments on seed quality for conservation. Just look for publications here under our names to check out what we achieved. The important changes we made to how we grew rice lines for optimum seed quality have endured until today, although (as I have reported elsewhere) changes to post-harvest handling of seeds have been improved through the work of former IRRI seed physiologist, Dr Fiona Hay.


So, as you can see, there are many different, and interesting, facets to plant sex. And as plant breeders and gene conservationists, we aim to exploit the idiosyncrasies of each species to produce more productive crop varieties or ensure the long term survival of varieties that no longer find favor with farmers, or wild species whose habitats are threatened through agricultural expansion, increasing urbanization, or climate change.


 

Combatting jet lag for job interviews across the globe

I started my first job on 1 January 1973. I retired (at 61) on 30 April 2010, after more than 37 years continuous employment. All but ten years were spent working abroad, in South and Central America, and in Asia. I also got to travel to more than 60 countries in the course of my work in international agricultural research and academia.

I’ve held five different positions in three organizations: the International Potato Center (CIP, in Lima, Peru); the University of Birmingham; and the International Rice Research Institute (IRRI, in the Philippines). However, I was interviewed for just two of those five positions, although during the course of my career I have flown all over the world for at least three other job interviews, none of which were successful as there always seemed to be an ‘internal candidate’ waiting in the wings. And in all cases, I had to combat jet lag to a greater or lesser extent all the while. You run on adrenaline and a certain degree of sang froid through the interviews [1].


 

My first job at CIP, as an Associate Taxonomist, came about almost by chance. In September 1970 I had enrolled on a one year MSc course on plant genetic resources conservation and use in the Department of Botany at the University of Birmingham.

The head of department, Professor Jack Hawkes, was an internationally-renowned potato expert and one of the pioneers of the 1960s genetic conservation movement. Just before Christmas that year he set off for a two month wild potato collecting trip to Bolivia, calling at CIP in Lima to seek some logistical help with the expedition. It was during that visit to CIP that the Director General, Dr Richard Sawyer mentioned that he wanted to send one of his young staff to the Birmingham course in September 1971. And did Jack know anyone who could come to CIP, for just one year, to help look at after the center’s growing germplasm collection of native Andean potato varieties (of which there are thousands).

On returning to the UK at the end of February 1971, Jack phoned me within a day of his return, and mentioned the position at CIP, and asked if I would be interested. I had no hesitation in saying an emphatic Yes! I’d always wanted to visit Peru, and having a position, albeit short-term, in genetic resources conservation was almost too good to be true.

Things didn’t go exactly to plan. There was a delay, while CIP negotiated with the UK government through the Overseas Development Administration (or was it Ministry of Overseas Development back in the day). My travel to Peru was put on hold, but I did register for and begin studies on potatoes towards a PhD in botany.

Richard Sawyer

Sometime during 1972 (I don’t remember exactly when) Richard Sawyer visited Birmingham, and I had an opportunity to sit down with him and Jack to discuss my posting in Lima. By then it had been agreed that it would be longer than just one year, and that I’d stay there long enough to complete the research for my PhD. I must have said all the right things, since Sawyer agreed to this arrangement. What I can say is that it wasn’t a formal interview as such. He had a habit of meeting prospective candidates around the world, often in airports, and deciding there and then if he wanted to hire them.

Anyway, to cut a long story short, I flew to Lima on 4 January 1973 and remained there until April 1975, when I returned to Birmingham to complete the residency requirements for my PhD and to submit my thesis. But before returning to the UK, I met with Sawyer concerning my future ambitions with CIP. And he made me an offer to move into CIP’s Outreach Program (later Regional Research) provided I successfully defended my thesis.

I was back in Lima just before the end of December, but not sure then to which regional office I would be posted although we had already initiated some plans for a move to Central America, about which I wrote recently. In April 1976, Steph and I left Lima headed for Turrialba in Costa Rica. And we remained there for almost five years, until the end of November 1980 in fact.

Returning to Lima, I had expected to move on to another of the CIP’s regional offices. Brazil was proposed, but when that fell through, we set about planning to move to the Philippines.


But fate intervened. Around September or October 1980 I heard about a new lectureship (in plant genetic resources) in my old department (by then renamed Plant Biology) at the University of Birmingham. I was torn. I was very happy at CIP and enjoyed the work I had been doing in various aspects of potato production. There again, a tenure-track university lectureship was too good an opportunity to ignore. So I sent in an application.

Around mid-December or so, I received feedback that my name would be put on the short list of candidates for interview, with one proviso. I had to commit to travel to Birmingham (at my own expense) for interview. After a long discussion with Steph, and looking at the most economical way of flying back to the UK (I eventually used Freddie Laker’s Skytrain airline into London-Gatwick from Miami), I confirmed my availability for interview during January.

I was in Birmingham for just over 36 hours (two nights) and afterwards I took the opportunity of visiting my mother who was staying with my eldest brother Martin and his family in Gloucestershire, south of Birmingham. I was in the UK for just under a week all told.

We were three candidates (one female, two male) and I guess that I was, to all intents and purposes, the ‘internal candidate’ (so I can’t rail too much about internal candidates) being the only one with an existing affiliation with the university. I was the last to be interviewed and arrived at the interview room a short while before my turn, to find the first candidate waiting in the corridor while the second was being grilled. We had been told to wait outside the interview room until all interviews had been concluded. One of us would be then invited back in to discuss a possible job offer.

With dry mouth and somewhat sweaty palms (and feeling rather jaded through jet lag) I entered the interview room with some trepidation. However, I was greeted by some friendly faces. The interview panel (certainly five persons) was chaired by Professor John Jinks, head of the Genetics Department and a formidable intellect. He was supported by Professor Derek Walker, head of the Biochemistry Department and Dean of the Science Faculty. There were three staff from Plant Biology: Jack Hawkes, Dr Dennis Wilkins (a fierce ecologist whose interviewing style seemed like a dog worrying a bone – I’d already come across him during my interview for a place on the MSc course, and as a graduate student), and Dr (later Professor) Brian Ford-Lloyd, who I’d known since my early graduate days and who has remained a lifelong friend and colleague with whom I have since published three books and many scientific papers. There may have been another person from the university administration, but I don’t recall.

I guess the interview must have lasted about 40 minutes, each member of the panel taking turns to probe my suitability for this lectureship. Unlike interviews for academic and research positions nowadays, I did not have to present a seminar to the department or be ‘interviewed’ by anyone outside the panel. (Incidentally, when the Mason Chair of Botany became vacant in 1982 on Jack Hawkes’ retirement, none of the staff met any of the professorial candidates nor were they expected to present a seminar).

Interview over, I joined the other two candidates outside, each of us deep in our own thoughts and very little conversation among us. After what seemed an age, but was probably no more than about 15 minutes, the door opened, and Brian came out to invite me back. John Jinks told me that the panel had agreed to offer me the lectureship and asked if I would accept it. I had already discussed with Steph what my answer would be under these circumstances. Unequivocally yes!

I don’t remember much after that. Except that Jack invited me for dinner at his house. I was staying in one of the guest rooms at Staff House in the center of the Birmingham campus. Early next morning, I made my way to the railway station and headed south for a few days before flying back to Peru and telling Steph (and our young daughter Hannah, almost three) the good news.


I joined the Plant Biology faculty on 1 April 1981 and spent ten years teaching undergraduate classes in flowering plant taxonomy, agricultural systems (as a component of a second year common course), and an honours course (with Brian) on plant genetic resources. But most of my teaching was at graduate level, to students from all over the world, who came to Birmingham for its world-renowned MSc course on genetic resources.

Then there was research on potatoes and legumes, and during this decade I supervised a number of graduate students to successfully submit their PhD theses. I had some administrative responsibilities that we were all expected to carry, some more than others. Towards the end of the 80s, however, things were changing at the university, and Margaret Thatcher’s government intervention in higher education was causing considerable disruption and disquiet. I found myself increasingly disillusioned with academic life.

Fate intervened, once again. I received notice of a new position at the International Rice Research Institute (IRRI) in the Philippines to lead one of the world’s most important genebanks. I decided to throw my hat in the ring. It was not an easy decision. Since IRRI was a sister institute to CIP, funded the same way through the Consultative Group on International Agricultural Research (or CGIAR) I knew, more or less what I would be letting myself in for if I joined IRRI.

However, there were more pressing personal issues. When we returned to the UK in 1981, our elder daughter Hannah was almost three. Her sister Philippa was born in May 1982. In 1991 they were thirteen and nine, and about to make the transition from from middle to high school, and from first to middle school, respectively. How would they cope with a move halfway across the world, leaving everything familiar behind, all their friends, and moving into an entirely new education system (we’d already decided that boarding school in the UK would not be an option).


Klaus Lampe

In early January 1991 I was invited for interview at IRRI, and flew with British Airways on a flight from London-Gatwick via Abu Dhabi and Hong Kong. The interviews were scheduled for Tuesday to Thursday, three rather intensive days of panel discussions, one-on-one meetings with senior staff, and a seminar. So I chose a flight that would get me into Manila on the Monday afternoon. Well, that was the plan. Arriving at Gatwick I discovered that my flight was delayed about 12 hours. Our designated 747 had a mechanical fault that could not be sorted easily, so we had to wait for a replacement plane to arrive from Florida before being turned around for the flight to the Far East. What a miserable experience. As a result I arrived to IRRI’s research campus in Los Baños (about 65 km south of Manila) around 01:30 on Tuesday morning and, checking over the interview schedule that had been left in my room at IRRI’s guesthouse, noted to my distinct discomfort that I had a breakfast meeting with the Director General, Dr Klaus Lampe, and his three Deputies at 07:00. Having left a request to be woken at 06:15, I took a sleeping pill, not that it helped much .

My internal clock was eight hours awry, but somehow I made it through the breakfast, and the next three days, taking a flight back to the UK late on Thursday night. I think I must have slept for a week once I was back in the UK.

There were three candidates for the genebank position. And we all had MSc (genetic resources) and PhD degrees (two on potatoes, one on rice) from the University of Birmingham and with Jack Hawkes as our PhD supervisor. I knew the other two candidates very well. One managed the Vegetable Genebank at Wellesbourne near Birmingham and the other headed the genebank at another CGIAR center in Nigeria, IITA. Although we overlapped some days at IRRI, our schedule of interviews and meetings meant that we hardly saw anything of each other.

On reflection, the interview schedule was gruelling, with hardly any time to catch one’s breath. We were kept on the go all the time, often with just short breaks between one interview and the next. It was an IRRI tradition to involve as many of the staff in interviewing candidates as possible, with a multiplicity of interview panels representing the different disciplines or a mixture [2]. And of course there was the more detailed interaction with staff in the genebank in my case.

Because the different panels did not interact with one another, candidates (as in my case) were faced with the same line of questions across different panels. Very repetitive and tiresome. And there were, in my opinion, the totally unacceptable and asinine questions from some IRRI staff, some of which received short shrift from me.

Let me give you two or three examples. I was asked if I was prepared to work hard. One line of questioning seemed to question my suitability for joining a center like IRRI and the CGIAR in general. I answered by a question: when did the person join the CGIAR? I was able to reply that I had joined and left the CGIAR years before this particular person had even first entered international agricultural research. 15: love to me! Another scientist, British, was obsessed with my undergraduate career and how successful I had been, notwithstanding that I had graduate degrees, and had been working already for almost 20 years.

A couple of weeks after arriving back in the UK I received a phone call from Lampe offering me the position, which I accepted after some negotiation over the salary and benefits package they originally put on the table. I joined IRRI on 1 July that year, and remained there until my retirement a decade ago.

After successfully running the genebank, in 2001 I was asked by Director General Ron Cantrell (with Board of Trustees approval) to join the senior management team, and become IRRI’s Director for Program Planning and Communications, a position I held until my retirement 2010.


[1] At one interview for the Crop Trust in Rome, I was interrupted by someone as I was delivering my seminar, a vision for the future of the organization. After the second interruption, in which this person had tried to ‘correct’ me, I had to tell her that this was my seminar, not hers, and went on to explain my thoughts on web presence. As it turned out I was not selected, but the organization did adopt my proposal for a more meaningful URL for its website.

On another occasion at Trinity College, Dublin, I delivered my seminar in the very lecture theater (in the Department of Botany) where Michael Caine had his wicked way with Julie Walters in the 1983 film Educating Rita.

When I interviewed for a position at ICARDA in Syria, much to my consternation and many members of staff the internal candidate accompanied me to one of the panel interviews, and even sat in on the interview. Needless to say a stop was soon put to that. Very unprofessional for senior management to even allow this to happen.

[2] When I joined IRRI and was involved in interviewing candidates (sometimes as chair of the selection committee) I tried to streamline the process somewhat, reducing the number of panel interviews per se, giving more time for informal interactions, while giving more responsibility to the selection panel.


Potatoes or rice?

I graduated in July 1970 from the University of Southampton (a university on England’s south coast) with a BSc Hons degree in botany and geography. ‘Environmental botany’ actually, whatever that meant. The powers that be changed the degree title half way through my final (i.e. senior) year.

Anyway, there I was with my degree, and not sure what the future held in store. It was however the beginning of a fruitful 40 year career in international agricultural research and academia at three institutions over three continents, in a number of roles: research scientist, principal investigator (PI), program leader, teacher, and senior research manager, working primarily on potatoes (Solanum tuberosum) and rice (Oryza sativa), with diversions into some legume species such as the grasspea, an edible form of Lathyrus.

Potatoes on the lower slopes of the Irazu volcano in Costa Rica, and rice in Bhutan

I spent the 1970s in South and Central America with the International Potato Center (CIP), the 1980s at the University of Birmingham as a Lecturer in the School of Biological Sciences (Plant Biology), and almost 19 years from July 1991 (until my retirement on 30 April 2010) at the International Rice Research Institute (IRRI) in the Philippines¹.

I divided my research time during those 40 years more or less equally between potatoes and rice (not counting the legume ‘diversions’), and over a range of disciplines: biosystematics and pre-breeding, genetic conservation, crop agronomy and production, plant pathology, plant breeding, and biotechnology. I was a bit of a ‘jack-of-all-trades’, getting involved when and where needs must.

However, I haven’t been a ‘hands-on’ researcher since the late 1970s. At both Birmingham and IRRI, I had active research teams, with some working towards their MSc or PhD, others as full time researchers. You can see our research output over many years in this list of publications.

Richard Sawyer

Very early on in my career I became involved in research management at one level or another. Having completed my PhD at Birmingham in December 1975 (and just turned 27), CIP’s Director General Richard Sawyer asked me to set up a research program in Costa Rica. I moved there in April 1976 and stayed there until November 1980.


In these Covid-19 lockdown days, I’m having ample time to reflect on times past. And today, 30 April, it’s exactly 10 years since I retired.

Just recently there was a Twitter exchange between some of my friends about the focus of their research, and the species they had most enjoyed working on.

And that got me thinking. If I had to choose between potatoes and rice, which one would it be? A hard decision. Even harder, perhaps, is the role I most enjoyed (or gave me the most satisfaction) or, from another perspective, in which I felt I’d accomplished most. I’m not even going to hazard a comparison between living and working in Peru (and Costa Rica) versus the Philippines. However, Peru has the majesty of its mountain landscapes and its incredible cultural history and archaeological record (notwithstanding I’d had an ambition from a small boy to visit Peru one day). Costa Rica has its incredible natural world, a real biodiversity hotspot, especially for the brilliant bird life. And the Philippines I’ll always remember for all wonderful, smiling faces of hard-working Filipinos.

And the scuba diving, of course.

Anyway, back to potatoes and rice. Both are vitally important for world food security. The potato is, by far, the world’s most important ‘root’ crop (it’s actually a tuber, a modified underground stem), by tonnage at least, and grown worldwide. Rice is the world’s most important crop. Period! Most rice is grown and consumed in Asia. It feeds more people on a daily basis, half the world’s population, than any other staple. Nothing comes close, except wheat or maize perhaps, but much of those grains is processed into other products (bread and pasta) or fed to animals. Rice is consumed directly as the grain.


Just 24 when I joined CIP as a taxonomist in January 1973, one of my main responsibilities was to collect potato varieties in various parts of the Peruvian Andes to add to the growing germplasm collection of native varieties and wild species. I made three trips during my three years in Peru: in May 1973 to the departments of Ancash and La Libertad (with my colleague, Zósimo Huamán); in May 1974 to Cajamarca (accompanied by my driver Octavio); and in January/February 1974 to Cuyo-Cuyo in Puno and near Cuzco, with University of St Andrews lecturer, Dr Peter Gibbs.

Top: with Octavio in Cajamarca, checking potato varieties with a farmer. Bottom: ready for the field, near Cuzco.

My own biosystematics/pre-breeding PhD research on potatoes looked at the breeding relationships between cultivated forms with different chromosome numbers (multiples of 12) that don’t naturally intercross freely, as well as diversity within one form with 36 chromosomes, Solanum x chaucha. In the image below, some of that diversity is shown, as well as examples of how we made crosses (pollinations) between different varieties, using the so-called ‘cut stem method’ in bottles.

Several PhD students of mine at Birmingham studied resistance to pests and diseases in the myriad of more than 100 wild species of potato that are found from the southern USA to southern Chile. We even looked at the possibility of protoplast fusion (essentially fusion of ‘naked’ cells) between different species, but not successfully.

I developed a range of biosystematics projects when taking over leadership of the International Rice Genebank at IRRI, publishing extensively about the relationships among the handful (about 20 or so) wild rice species and cultivated rice. One of the genebank staff, Elizabeth Ma. ‘Yvette’ Naredo (pointing in the image below) completed her MS degree under my supervision.

Although this research had a ‘taxonomic’ focus in one sense (figuring out the limits of species to one another), it also had the practical focus of demonstrating how easily species might be used in plant breeding, according to their breeding relationships, based on the genepool concept of Harlan and de Wet, 1971 [1], illustrated diagrammatically below.


When I transferred to Costa Rica in 1976, I was asked to look into the possibility of growing potatoes under hot, humid conditions. At that time CIP was looking to expand potato production into areas and regions not normally associated with potato cultivation. One of the things I did learn was how to grow a crop of potatoes.

I was based in Turrialba (at the regional institute CATIE), at around 650 masl, with an average temperature of around 23°C (as high as 30°C and never much lower than about 15°C; annual rainfall averages more than 2800 mm). Although we did identify several varieties that could thrive under these conditions, particularly during the cooler months of the year, we actually faced a more insidious problem, and one that kept me busy throughout my time in Costa Rica.

Shortly after we planted the first field trials on CATIE’s experiment station, we noticed that some plants were showing signs of wilting but we didn’t know the cause.

With my research assistant Jorge Aguilar checking on wilted plants in one of the field trials.

Luis Carlos González

Fortunately, I established a very good relationship with Dr Luis Carlos González Umaña, a plant pathologist in the University of Costa Rica, who quickly identified the culprit: a bacterium then known as Pseudomonas solanacearum (now Ralstonia solanacearum) that causes the disease known as bacterial wilt.

I spent over three years looking into several ways of controlling bacterial wilt that affects potato production in many parts of the world. An account of that work was one of the first posts I published in this blog way back in 2012.

The other aspect of potato production which gave me great satisfaction is the work that my colleague and dear friend Jim Bryan and I did on rapid multiplication systems for seed potatoes.

Being a vegetatively-propagated crop, potatoes are affected by many diseases. Beginning with healthy stock is essential. The multiplication rate with potatoes is low compared to crops that reproduce through seeds, like rice and wheat. In order to bulk up varieties quickly, we developed a set of multiplication techniques that have revolutionised potato seed production systems ever since around the world.

AS CIP’s Regional Representative for Mexico, Central America, and the Caribbean (known as CIP’s Region II), I also contributed to various potato production training courses held each year in Mexico. But one of our signature achievements was the launch of a six nation research network or consortium in 1978, known as PRECODEPA (Programa REgional COoperativo DE PApa), one of the first among the CGIAR centers. It was funded by the Swiss Government.

Shortly after I left Costa Rica in November 1980, heading back to Lima (and unsure where my next posting would be) PRECODEPA was well-established, and leadership was assumed by the head of one of the national potato program members of the network. PRECODEPA expanded to include more countries in the region (in Spanish, French, and English), and was supported continually by the Swiss for more than 25 years. I have written here about how PRECODEPA was founded and what it achieved in the early years.

I resigned from CIP in March 1981 and returned to the UK, spending a decade teaching at the University of Birmingham.


Did I enjoy my time at Birmingham? I have mixed feelings.

I had quite a heavy teaching load, and took on several administrative roles, becoming Chair of the Biological Sciences Second Year Common Course (to which I contributed a module of about six lectures on agricultural ecosystems). I had no first teaching commitments whatsoever, thank goodness. I taught a second year module with my colleague Richard Lester on flowering plant taxonomy, contributing lectures about understanding species relationships through experimentation.

Brian Ford-Lloyd

With my close friend and colleague Dr Brian Ford-Lloyd (later Professor), I taught a final year module on plant genetic resources, the most enjoyable component of my undergraduate teaching.

One aspect of my undergraduate responsibilities that I really did enjoy (and took seriously, I believe—and recently confirmed by a former tutee!) was the role of personal tutor to 1st, 2nd and 3rd year students. I would meet with them about once a week to discuss their work, give advice, set assignments, and generally be a sounding board for any issues they wanted to raise with me. My door was always open.

Most of my teaching—on crop diversity and evolution, germplasm collecting, agricultural systems, among others—was a contribution to the one year (and international) MSc Course on Conservation and Utilization of Plant Genetic Resources on which I had studied a decade earlier. In my travels around the world after I joined IRRI in 1991, I would often bump into my former students, and several also contributed to a major rice biodiversity project that I managed for five years from 1995. I’m still in contact with some of those students, some of whom have found me through this blog. And I’m still in contact with two of my classmates from 1970-71.

Research on potatoes during the 1980s at Birmingham was not straightforward. On the one hand I would have liked to continue the work on wild species that had been the focus of Professor Jack Hawkes’ research over many decades.

With Jack Hawkes, collecting Solanum multidissectum in the central Andes north of Lima in early 1981 just before I left CIP to return to the UK. This was the only time I collected with Hawkes. What knowledge he had!

He had built up an important collection of wild species that he collected throughout the Americas. I was unable to attract much funding to support any research projects. It wasn’t a research council priority. Furthermore, there were restrictions on how we could grow these species, because of strict quarantine regulations. In the end I decided that the Hawkes Collection would be better housed in Scotland at the Commonwealth Potato Collection (or CPC, that had been set up after the Empire Potato Collecting Expedition in 1938-39 in which Jack participated). In 1987, the Hawkes Collection was acquired by the CPC and remains there to this day.

Dave Downing was the department technician who looked after the potato collection at Birmingham. He did a great job coaxing many different species to flower.

Having said that, one MSc student, Susan Juned, investigated morphological and enzyme diversity in the wild species Solanum chacoense. After graduating Susan joined another project on potato somaclones that was managed by myself and Brian Ford-Lloyd (see below). Another student, Ian Gubb, continued our work on the lack of enzymic blackening in Solanum hjertingii, a species from Mexico, in collaboration with the Food Research Institute in Norwich, where he grew his research materials under special quarantine licence. A couple of Peruvian students completed their degrees while working at CIP, so I had the opportunity of visiting CIP a couple of times while each was doing field work, and renew my contacts with former colleagues. In 1988, I was asked by CIP to join a panel for a three week review of a major seed production project at several locations around Peru.

With funding of the UK’s Overseas Development Administration (ODA, or whatever it was then), and now the Department for International Development (DFID), and in collaboration with the Plant Breeding Institute (PBI) in Cambridge and CIP, in 1983/84 we began an ambitious (and ultimately unsuccessful) project on true potato seed (TPS) using single seed descent (SSD) in diploid potatoes (having 24 chromosomes). Because of the potato quarantine situation at Birmingham, we established this TPS project at PBI, and over the first three years made sufficient progress for ODA to renew our grant for a second three year period.

We hit two snags, one biological, the other administrative/financial that led to us closing the project after five years. On reflection I also regret hiring the researcher we did. I’ve not had the same recruitment problem since.

Working with diploid potatoes was always going to be a challenge. They are self incompatible, meaning that the pollen from a flower ‘cannot’ fertilize the same flower. Nowadays mutant forms have been developed that overcome this incompatibility and it would be possible to undertake SSD as we envisaged. Eventually we hit a biological brick wall, and we decided the effort to pursue our goal would take more resources than we could muster. In addition, the PBI was privatized in 1987 and we had to relocate the project to Birmingham (another reason for handing over the Hawkes Collection to the CPC). We lost valuable research impetus in that move, building new facilities and the like. I think it was the right decision to pull the plug when we did, admit our lack of success, and move on.

We wrote about the philosophy and aims of this TPS project in 1984 [2], but I don’t have a copy of that publication. Later, in 1987, I wrote this review of TPS breeding [3].

Susan Juned

As I mentioned above, Brian Ford-Lloyd and I received a commercial grant to look into producing tissue-culture induced variants, or somaclones, of the crisping potato variety Record with reduced low temperature sweetening that leads to ‘blackened’ crisps (or chips in the USA) on frying. We hired Susan Juned as the researcher, and she eventually received her PhD in 1994 for this work. Since we kept the identity of each separate Record tuber from the outset of the project, over 150 tubers, and all the somaclone lines derived from each, we also showed that there were consequences for potato seed production and maintenance of healthy stocks as tissue cultures. We published that work in 1991. We also produced a few promising lines of Record for our commercial sponsor.

One funny aspect to this project is that we made it on to Page 3 of the tabloid newspaper The Sun, notorious in those days for a daily image of a well-endowed and naked young lady. Some journalist or other picked up a short research note in a university bulletin, and published an extremely short paragraph at the bottom of Page 3 (Crunch time for boffins) as if our project did not have a serious objective. In fact, I was even invited to go on the BBC breakfast show before I explained that the project had a serious objective. We weren’t just investigating ‘black bits in crisp packets’.

Brian and I (with a colleague, Martin Parry, in the Department of Geography) organized a workshop on climate change in 1989, when there was still a great deal of skepticism. We published a book in 1990 from that meeting (and followed up in 2013 with another).

Despite some successes while at Birmingham, and about to be promoted to Senior Lecturer, I had started to become disillusioned with academic life by the end of the 1980s, and began to look for new opportunities. That’s when I heard about a new position at IRRI in the Philippines: Head of the newly-established Genetic Resources Center, with responsibility for the world renowned and largest international rice genebank. I applied. The rest is history,


Klaus Lampe

I was appointed by Director General Klaus Lampe even though I’d never actually run a genebank before. Taking on a genebank as prestigious as the International Rice Genebank was rather daunting. But help was on the way.

I knew I had a good team of staff. All they needed was better direction to run a genebank efficiently, and bring the genebank’s operations up to a higher standard.

Staff of the International Rice Genebank on a visit to PhilRice in 1996.

There was hardly an aspect of the operations that we didn’t overhaul. Not that I had the genebank team on my side from the outset. It took a few months for them to appreciate that my vision for the genebank was viable. Once on board, they took ownership of and responsibility for the individual operations while I kept an overview of the genebank’s operation as a whole.

With Pola de Guzman inside the Active Collection store room at +4C. Pola was my right hand in the genebank, and I asked her to take on the role of genebank manager, a position she holds to this day.

I’ve written extensively in this blog about the genebank and genetic resources of rice, and in this post I gave an overview of what we achieved.

You can find more detailed stories of the issues we faced with data management and germplasm characterization, or seed conservation and regeneration (in collaboration with my good friend Professor Richard Ellis of the University of Reading). We also set about making sure that germplasm from around Asia (and Africa and the Americas) was safe in genebanks and duplicated in the International Rice Genebank. We embarked on an ambitious five year project (funded by the Swiss government) to collect rice varieties mainly (and some wild samples as well), thereby increasing the size of the genebank collection by more than 25% to around 100,000 samples or accessions. The work in Laos was particularly productive.

My colleague, Dr Seepana Appa Rao (left) and Lao colleagues interviewing a farmer in Khammouane Province about the rice varieties she was growing.

We did a lot of training in data management and germplasm collecting, and successfully studied how farmers manage rice varieties (for in situ or on farm conservation) in the Philippines, Vietnam, and India.

One of IRRI’s main donors is the UK government through DFID. In the early 1990s, not long after I joined IRRI, DFID launched a new initiative known as ‘Holdback’ through which some of the funding that would, under normal circumstances, have gone directly to IRRI and its sister CGIAR centers was held back to encourage collaboration between dneters and scientists in the UK.

Whenever I returned on annual home leave, I would spend some time in the lab at Birmingham. John Newbury is on the far left, Parminder Virk is third from left, and Brian Ford-Lloyd on the right (next to me). One of my GRC staff, the late Amy Juliano spent a couple of months at Birmingham learning new molecular techniques. She is on the front row, fourth from right.

With my former colleagues at the University of Birmingham (Brian Ford-Lloyd, Dr John  Newbury, and Dr Parminder Virk) and a group at the John Innes Centre in Norwich (the late Professor Mike Gale and Dr Glenn Bryan) we set about investigating how molecular markers (somewhat in their infancy back in the day) could be used describe diversity in the rice collection or identify duplicate accessions.

Not only was this successful, but we published some of the first research in plants showing the predictive value of molecular markers for quantitative traits. Dismissed at the time by some in the scientific community, the study of  associations between molecular markers and traits is now mainstream.

In January 1993, I was elected Chair while attending my first meeting of the Inter-Center Working Group on Genetic Resources (ICWG-GR) in Ethiopia (my first foray into Africa), a forum bringing expertise in genetic conservation together among the CGIAR centers.

ICWG-GR meeting held at ILCA in Addis Ababa, Ethiopia in January 1993.

Over the next three years while I was Chair, the ICWG-GR managed a review of genetic resources in the CGIAR, and a review of center genebanks. We also set up the System-Wide Genetic Resources Program, that has now become the Genebank Platform.


I never expected to remain at IRRI as long as I did, almost nineteen years. I thought maybe ten years at most, and towards the end of the 1990s I began to look around for other opportunities.

Then, in early 2001, my career took another course, and I left genetic resources behind, so to speak, and moved into senior management at IRRI as Director for Program Planning and Coordination (later Communications, DPPC). And I stayed in that role until retiring from the institute ten years ago.

Top: after our Christmas lunch together at Antonio’s restaurant in Tagaytay, one of the best in the Philippines. To my left are: Sol, Eric, Corints, Vel, and Zeny. Below: this was my last day at IRRI, with Eric, Zeny, Corints, Vel, and Yeyet (who replaced Sol in 2008).

Ron Cantrell

The Director General, Ron Cantrell, asked me to beef up IRRI’s resource mobilization and project management. IRRI’s reputation with its donors had slipped. It wasn’t reporting adequately, or on time, on the various projects funded at the institute. Furthermore, management was not sure just what projects were being funded, by which donor, for what period, and what commitments had been set at the beginning of each. What an indictment!

I wrote about how DPPC came into being in this blog post. One of the first tasks was to align information about projects across the institute, particularly with the Finance Office. It wasn’t rocket science. We just gave every project (from concept paper to completion) a unique ID that had to be used by everyone. We also developed a corporate brand for our project reporting so that any donor could immediately recognise a report from IRRI.

So we set about developing a comprehensive project management system, restoring IRRI’s reputation in less than a year, and helping to increase the annual budget to around US$60 million. We also took on a role in risk management, performance appraisal, and the development of IRRI’s Medium Term Plans and its Strategy.

Bob Zeigler

Then under Ron’s successor, Bob Zeigler, DPPC went from strength to strength. Looking back on it, I think those nine years in DPPC were the most productive and satisfying of my whole career. In that senior management role I’d finally found my niche. There’s no doubt that the success of DPPC was due to the great team I brought together, particularly Corinta who I plucked out of the research program where she was working as a soil chemist.

Around 2005, after Bob became the DG, I also took on line management responsibility for a number of support units: Communication and Publications Services (CPS), Library and Documentation Services (LDS), Information Technology Service (ITS), and the Development Office (DO). Corinta took over day-to-day management of IRRI’s project portfolio.

With my unit heads, L-R: Gene Hettel (CPS), Mila Ramos (LDS), Marco van den Berg (ITS), Duncan Macintosh (DO), and Corinta Guerta (DPPC).


So, ten years on, what memories I have to keep my mind ticking over during these quiet days. When I began this post (which has turned out much longer than I ever anticipated) my aim was to decide between potatoes and rice. Having worked my way through forty years of wonderful experiences, I find I cannot choose one over the other. There’s no doubt however that I made a greater contribution to research and development during my rice days.

Nevertheless, I can’t help thinking about my South American potato days with great affection, and knowing that, given the chance, I’d be back up in the Andes at a moment’s notice. Potatoes are part of me, in a way that rice never became.

Farmer varieties of potatoes commonly found throughout the Andes of Peru.


Everyone needs good mentors. I hope I was a good mentor to the folks who worked with me. I was fortunate to have had great mentors. I’ve already mentioned a number of the people who had an influence on my career.

I can’t finish this overview of my forty years in international agriculture and academia without mentioning five others: Joe Smartt (University of Southampton); Trevor Williams (University of Birmingham); Roger Rowe (CIP); John Niederhauser (1990 World Food Prize Laureate); and Ken Brown (CIP)

L-R: Joe Smartt, Trevor Williams, Roger Rowe, and John Niederhauser.

  • Joe, a lecturer in genetics, encouraged me to apply for the MSc Course at Birmingham in early 1970. I guess without his encouragement (and Jack Hawkes accepting me on to the course) I never would have embarked on a career in genetic conservation and international agriculture. I kept in regular touch with Joe until he passed away in 2013.
  • At Birmingham, Trevor supervised my MSc dissertation on lentils. He was an inspirational teacher who went on to become the Director General of the International Board for Plant Genetic Resources (IBPGR) in Rome. The last time I spoke with Trevor was in 2012 when he phoned me one evening to congratulate me on being awarded an OBE. He passed away in 2015.
  • Roger joined CIP in July 1973 as Head of the Breeding and Genetics Department, from the USDA Potato Collection in Wisconsin. He was my first boss in the CGIAR, and I learnt a lot from him about research and project management. We are still in touch.
  • John was an eminent plant pathologist whose work on late blight of potatoes in Mexico led to important discoveries about the pathogen and the nature of resistance in wild potato species. John and I worked closely from 1978 to set up PRECODEPA. He had one of the sharpest (and wittiest) minds I’ve come across. John passed away in 2005.
  • Ken Brown

    Ken was a fantastic person to work with—he knew just how to manage people, was very supportive, and the last thing he ever tried to do was micromanage other people’s work. I learnt a great deal about program and people management from him.


[1] Harlan, JR and JMJ de Wet, 1971. Toward a rational classification of cultivated plants. Taxon 20, 509-517.

[2] Jackson, MT. L Taylor and AJ Thomson 1985. Inbreeding and true potato seed production. In: Report of a Planning Conference on Innovative Methods for Propagating Potatoes, held at Lima, Peru, December 10-14,1984, pp. 169-79.

[3] Jackson, MT, 1987. Breeding strategies for true potato seed. In: GJ Jellis & DE Richardson (eds), The Production of New Potato Varieties: Technological Advances. Cambridge University Press, pp. 248-261.


 

Genebanks are the future . . . but there is a big challenge ahead

Our ability to adapt to changing climates will be determined, to a considerable extent, upon our ability to feed ourselves, to provide shelter and clothing, and for many peoples in many developing countries there will be problems in obtaining fuelwood for cooking or heating.

My close friend and former colleague Professor Brian Ford-Lloyd and I wrote that 30 years ago in the first chapter [1] of the book on climate change and genetic resources that we edited with Martin Parry.

We also wrote that to avert famine it would be necessary to raise crop yields and identify and use the sorts of genetic resources to contribute to this effort. Fortunately, these genetic resources are, to a large extent, already conserved in genebanks around the world.

In a recent post, I argued that, in the face of climate change, genebanks are the future. And while I hold to that assertion, I must also highlight a challenge that must be addressed—with greater urgency—and one that I already raised 30 years ago!

And that challenge is all about the potential impacts of climate change on genebank operations. I’m concerned about how rising temperatures and changing seasons might affect the ability of a genebank to produce good quality seeds during initial multiplication or thereafter to regenerate seed stocks.

We also have limited information how the environmental pest and plant pathogen load will change under a changing climate. That’s a particular concern for plant species that cannot be stored as seeds but are conserved in field genebanks. In this, the International Year of Plant Health, it is a particular genebank issue worthy of more attention.

Furthermore, we shouldn’t discount possible increases in genebank costs as cooling equipment works harder to maintain cold rooms at the desired temperatures of -18°C for long-term conservation (in so-called Base Collections), or just above 0°C for germplasm that is available for distribution and exchange (in Active Collections), the situation found in many genebanks.


Many (but not all) genebanks were set up in parts of the world where the crops they conserve are important, and where many originated, in so-called ‘centers of diversity’. That holds particularly for the international genebanks managed in eleven of the CGIAR centers, such as for potatoes at the International Potato Center (CIP) in Peru, beans and cassava at the International Center for Tropical Agriculture (CIAT) in Colombia, or rice at the International Rice Research Institute (IRRI) in the Philippines, to give just three examples.

But there are exceptions. CIMMYT, the International Maize and Wheat Improvement Center (located just outside Mexico City) certainly lies in the center of diversity for maize, but not wheat, which is a crop that was domesticated and evolved under domestication in the Near East and fringes of the Mediterranean. Another exception is Bioversity International, based in Rome that maintains an important collection of bananas (Musa spp.) as tissue culture samples (known as in vitro conservation) as well as samples stored frozen (or cryopreserved) at the temperature of liquid nitrogen (-196°C) in Belgium at the Katholieke Universiteit Leuven (KU Leuven).

You can find out more about the CGIAR genebanks on the Genebank Platform website.

As the network of genebanks expanded worldwide, with almost every country setting up at least one national genebank, many genebanks now hold samples of varieties and wild species from distance regions. And it does have some important implications for long-term conservation and regeneration, and exchange of germplasm.


Long-term conservation of many plant species in genebanks is possible because their seeds can be dried to a low moisture content and stored at low temperature. We refer to these seeds as orthodox, and we have a pretty good idea of how to dry them to an optimum moisture content (although research at IRRI has thrown new light on some of the critical drying processes). Provided they can be kept dry and cool, we can predict—with some confidence—how long they will survive in storage before they need to be grown again, or ‘regenerated’, to produce healthy seeds stocks.

On the other hand, the seeds of some species, many from the tropics, do not tolerate desiccation or low temperature storage. We refer to the seeds of these species as recalcitrant. There again, there is also a group of crops that cannot be stored as seeds but must be maintained, like the banana example referred to above, as tissue cultures or cryopreserved, if technically feasible; or in field genebanks because they reproduce vegetatively. The potato for example is grown from tubers, and for any variety, each tuber is genetically identical (a clone) to all the others of that variety. Although potatoes do produce seeds (often in abundance), they do not breed true. That’s why conservation of the original varieties is so important.

However, seeds do not live forever, and periodically regenerated if there are signs of declining viability. Or when seed stocks have become depleted because they have been sent to breeders and researchers around the world.


Climate change is already affecting crop productivity in some parts of the world. Increases in temperature (notably higher nighttime temperatures) are linked with a reduction of fertility in rice [2] for example. Stressed plants produce seeds of lower quality and, in wheat, have an effect on seedling vigour and potentially on yield [3].

Many (perhaps most) genebanks aim to grow their germplasm close to the genebank location, although this may not always be possible. Will the environments of genebank locations remain constant under climate change? Most certainly not. Temperatures have already risen, and are predicted to increase even further unless governments really do take concerted action to reduce our carbon footprint. While temperatures will increase, daylength will remain constant. Under climate change we will see new combinations of temperature and daylength. Response to daylength (or photoperiodism) is a key adaptive trait in many plant species. It is already a challenge to grow some genebank samples at a single location because of their wide latitudinal provenance.

Richard Ellis

Incidentally, 30 years on, it’s worthwhile to take a second look at Chapter 6 in our genetic resources and climate change book [4] by Professor Richard Ellis and colleagues at the University of Reading on the relationship between temperature and crop development and growth.

Seed quality is all important for genebank managers. Unlike farmers, however, they are less concerned about yield per se. They do need to understand the impacts of higher temperatures, drought, or submergence—and when they occur in a plant’s life cycle—on seed quality, because seed quality is a key determinant of long-term survival of seeds.

In a recent article, Richard wrote this: . . . when scientists breed new crop varieties using genebank samples as “parents”, they should include the ability to produce high-quality seed in stressful environments in the variety’s selected traits. In this way, we should be able to produce new varieties of seeds that can withstand the increasingly extreme pressures of climate change.

While a genebank might be able to regenerate its conserved germplasm closeby today, to what extent will these ‘regeneration environments’ become ‘stressful environments’ under a changing climate? What measures must a genebank take to ensure the production of the highest quality seeds? Furthermore, how will the pest and disease load change, and what impact will that have during regeneration and, perhaps more importantly, on germplasm conserved in field genebanks?

We were faced by a similar situation almost 30 years ago after I had joined IRRI. There’s no question that IRRI conserves, in its International Rice Genebank, the world’s largest and genetically most diverse collection of rice varieties and wild species.

Kameswara Rao

One important group of rice varieties, the so-called japonica rices originated in temperate zones, and it was tricky to produce high quality seeds in Los Baños (14°N). With my colleague Kameswara Rao (who received his PhD in Richard’s lab at Reading), we carefully analysed the factors affecting seed quality in the japonica varieties grown in Los Baños [5], and adapted the regeneration cycle to the most appropriate time of year. Given that water was not a limiting factor (there were irrigation ponds on the IRRI Experiment Station) we were not constrained by the changing seasons as such. This would not be possible for all genebanks where growing seasons are more differentiated, in terms of temperature and water availability.


I did look into the possibility of growing the japonica (and other ‘difficult’ varieties) at other sites, even outside the Philippines. What seemed, at the outset, as a logical solution to a challenging problem, became a logistical nightmare.

I was concerned that the International Rice Genebank could ‘lose’ control of the management of germplasm samples in the field unless genebank staff were assigned to oversee that work, even in another country. Afterall, the reputation of the genebank lies in its ability to safely conserve germplasm over the long-term and safely distribute seeds, conditions I was not prepared to compromise.

There were also various plant quarantine issues, seemingly insurmountable. Plant quarantine personnel are, by outlook, a conservative bunch of people. And with good reason. IRRI successfully operates its germplasm exchange (both receipt and distribution) under the auspices of the Philippines Department of Agriculture’s National Plant Quarantine Services Division (of the Bureau of Plant Industry). The institute’s Seed Health Unit carries out all the tests necessary to certify all imports and exports of rice seeds meet exacting quarantine standards. All samples received by IRRI must be tested and, if they are destined for future distribution, must be grown in the field at IRRI for further observation and certification. That would negate the advantages of producing seeds in a ‘better’ environment. Countries like the USA or Russia that cover a huge range of latitude and longitude have a network of experiment stations where germplasm could be grown, and under the same plant quarantine jurisdiction. For many countries and their genebanks, that will just not be an option.

So the challenge for genebank managers is to make sure the impact of climate change on germplasm management and exchange is part of risk management. And begin discussions (if they have not already started) to determine how inter-genebank collaboration could overcome some of the potential constraints I have raised.


[1] Jackson, M.T. & B.V. Ford-Lloyd, 1990. Plant genetic resources – a perspective. In: M. Jackson, B.V. Ford-Lloyd & M.L. Parry (eds.), Climatic Change and Plant Genetic Resources. Belhaven Press, London, pp. 1-17. PDF

[2] Shaobing Peng et al., 2004) Rice yields decline with higher night temperature from global warming.

[3] Khah, EM et al., 1989. Effects of seed ageing on growth and yield of spring wheat at different plant-population densities. Field Crops Research 20: 175-190.

[4] Ellis, RH et al., 1990. Quantitative relations between temperature and crop development and growth. In: M. Jackson, B.V. Ford-Lloyd & M.L. Parry (eds.), Climatic Change and Plant Genetic Resources. Belhaven Press, London, pp. 85-115.

[5] Kameswara Rao, N. & Jackson, MT, 1996. Seed production environment and storage longevity of japonica rices (Oryza sativa L.). Seed Science Research 6, 17-21. PDF


 

Never have genebanks been so relevant . . . or needed

There has perhaps never been a better justification for conservation of seeds in genebanks, or ex situ conservation as it’s commonly known.

The devastating bush fires that have ravaged huge swathes of eastern Australia have highlighted the fragility of environments that are being affected adversely by the consequences of climate change. It’s a wake-up call, even though some of us were commenting on this a generation ago (and more recently in 2014).

While many news stories have emotionally focused on the impact of the fires on wildlife—the injury to and death of millions of animals—very little has appeared in the media about the impacts on plant species. One story stood out, however: the extraordinary measures that firefighters took to protect the only natural stand of ancient Wollemi pines at a secret location in the Blue Mountains west of Sydney.

In another story I came across, there are concerns that a wild species of sorghum native to East Gippsland in southeast Australia may now be headed towards extinction as fires swept across its habitats. Only time will tell whether this particular species has survived.

Bush fires are not uncommon in Australia and many other parts of the world. Vegetation is, however, quite resilient and, given time, often recovers to a semblance of what was there before fires ravaged the landscape, although the balance of species may be disrupted for a few years.

Clearly nature is under threat. Indeed, in an article in The Guardian on 20 January 2020 the acting executive secretary of the UN Convention on Biological Diversity, Elizabeth Maruma Mrema, is quoted as imploring ‘governments to ensure 2020 is not just another “year of conferences” on the ongoing ecological destruction of the planet, urging countries to take definitive action on deforestation, pollution and the climate crisis.’

Catastrophic fires, and other effects of environmental degradation and climate change, vividly illustrate the necessity of having a dual conservation strategy, backing up conservation in nature, or in situ conservation, with conservation of seeds in genebanks, where appropriate. It’s clear that relying in situ conservation alone is too high a risk to take.

About 25 years ago, while I was leading the genetic conservation program at the International Rice Research Institute (IRRI) in the Philippines, and conserving the world’s largest and most diverse collection of rice varieties and wild species in the International Rice Genebank, vocal lobby groups were pressing hard in several international forums and the media to redirect conservation away from genebanks (they were often referred to as ‘gene morgues’) towards in situ conservation, in nature for wild species or on-farm for cultivated varieties.

The criticism of many genebanks, including some of those managed at centers of the Consultative Group for International Agricultural Research or CGIAR, was not unwarranted. Insufficient attention was given to applying internationally-agreed genebank standards. This was not entirely the fault of genebank managers, both inside and outside the CGIAR. They were often starved of funds, living hand to mouth, year to year as it were, and expected to manage a long-term conservation commitment on inadequate annual budgets.

Standards in the eleven CGIAR genebanks have been raised through the Genebank Platform, supported by the Crop Trust. Between them, not only do the CGIAR genebanks conserve some of the most world’s important collections of genetic resources of cereals, legumes, and roots and tubers, but these collections have been studied in depth to find useful traits, and the volume of germplasm shared annually for research and production is impressive. Just take a look at the data for the years 2012-2018.

Other international efforts like the Crop Wild Relatives Project (supported by the Government of Norway), and managed by the Crop Trust with the Royal Botanic Gardens, Kew have focused attention on the importance of conserving the wild relatives of crop plants as they are often genetically endowed with traits not found in their domesticated derivatives. My own experience studying nematode resistance in wild potatoes from Bolivia for example illustrated the importance of wild species for crop improvement.

Today, we have a whole new suite of tools to study the crop varieties and wild species conserved in genebanks around the world. As the genome of each new species is sequenced, another door is opened on the genetic diversity of nature, how it’s organized, and how genes control different traits. Indeed an argument has recently been made to genotype all samples (or accessions in the ‘official’ parlance) in a genebank. Certainly this is an approach that was merely a dream only two decades ago.

I still argue, however, that in tandem with the molecular analysis of crop diversity, there must be an in-depth evaluation of how different varieties behave in real environments. In joint research between former colleagues of mine at The University of Birmingham (Professors Brian Ford-Lloyd and John Newbury and Dr Parminder Virk) and myself at IRRI in the 1990s, we demonstrated the predictive value of molecular markers for several quantitative characters associated with crop productivity. Somewhat derided at the time, association genetics has become an important approach to study crop diversity.

I’ve been publishing about climate change and the value of plant genetic resources for over 30 years, beginning when there was far more skepticism about this phenomenon than today. At a conference on Crop Networks, held in Wageningen in the Netherlands in December 1990, I presented a paper outlining the need for collaborative research to study germplasm collections in the face of climate change.

And in that paper I argued that widespread testing in replicated field trials would be necessary to identify useful germplasm. With the addition nowadays of molecular markers and genome-wide detailed information for many species, there is now a much better opportunity to evaluate germplasm to identify gene sources that can help protect crops against the worst ravages of climate change and maintain agricultural productivity. Even though political leaders like Donald Trump and Scott Morrison continue to deny climate change (or merely pay lip service), society as a whole cannot ignore the issue. Afterall, for a predicted global population of 9.8 billion by 2050, most of whom will not produce their own food, continued agricultural productivity is an absolute necessity. The conservation, evaluation, and use of plant genetic resources stored in the world’s genebanks is a key component of achieving that goal.

Genebanks are the future! However, in a follow-up story, I write that genebanks still face a major challenge under a changing climate. Read more here.

Have [botany] degree . . . will travel (#iamabotanist)

One thing I had known from a young boy was that I wanted to see the world; and work overseas if possible. Following somewhat in the footsteps of my parents, Fred and Lilian Jackson.

Who would have thought that a degree in botany would open up so many opportunities?

Come 1 January, it will be 47 years since I joined the staff of the International Potato Center (CIP) in Lima, Peru, and the start of a 37 year career in the plant sciences: as a researcher, teacher, and manager. Where has the time flown?

After eight years in South and Central America, I spent a decade on the faculty of the School of Biological Sciences at the University of Birmingham. Then, in 1991, I headed to Southeast Asia, spending almost 19 years at the International Rice Research Institute (IRRI) in the Philippines, before retiring in 2010.

However, I have to admit that Lady Luck has often been on my side, because my academic career didn’t get off to an auspicious start and almost thwarted my ambitions.

While I enjoyed my BSc degree course at the University of Southampton (in environmental botany and geography) I was frankly not a very talented nor particularly industrious student. I just didn’t know how to study, and always came up short in exams. And, on reflection, I guess I burnt the candle more at one end than the other.

It would hard to underestimate just how disappointed I was, in June 1970, to learn I’d been awarded a Lower Second Class (2ii) degree, not the Upper Second (2i) that I aspired to. I could have kicked myself. Why had I not applied myself better?

But redemption was on the horizon.

Prof. Jack Hawkes

In February 1970, Professor Jack Hawkes (head of the Department of Botany at the University of Birmingham) interviewed me for a place on the MSc Course Conservation and Utilization of Plant Genetic Resources, that had opened its doors to the first cohort some months earlier. I must have made a favorable impression, because he offered me a place for September.

But how was I to support myself for the one year course, and pay the tuition  fees? I didn’t have any private means and, in 1970, the Course had not yet been recognized for designated studentships by any of the UK’s research councils.

Through the summer months I was on tenterhooks, and with the end of August approaching, started seriously to think about finding a job instead.

Then salvation arrived in the form of a phone call from Professor Hawkes, that the university had awarded me a modest studentship to cover living expenses and accommodation (about £5 a week, or equivalent to about £66 in today’s money) as well as paying the tuition fees. I could hardly believe the good news.

Prof. Trevor Williams

By the middle of September I joined four other students (from Venezuela, Pakistan, Turkey, and Nigeria) to learn all about the importance of crop plant diversity. Over the next year, discovered my academic mojo. I completed my MSc dissertation on lentils under Course Tutor (and future Director General of the International Board for Plant Genetic Resources, now Bioversity International), Professor Trevor Williams.

Starting a career in international agricultural research
Just before Christmas 1970, Hawkes traveled to Peru and Bolivia to collect wild potatoes. On his return in February 1971, he dangled the possibility of a one year position in Peru (somewhere I had always wanted to visit) to manage the potato germplasm collection at CIP while a Peruvian researcher came to Birmingham for training on the MSc Course. Then, in mid-summer, CIP’s Director General, Dr. Richard Sawyer, visited Birmingham and confirmed the position at CIP beginning in September 1971.

But things didn’t exactly go to plan. Funding from the British government’s overseas development aid budget to support my position at CIP didn’t materialise until January 1973. So, during the intervening 15 months, I began a PhD research project on potatoes (under the supervision of Professor Hawkes), continuing with that particular project as part of my overall duties once I’d joined CIP in Lima, under the co-supervision of Dr. Roger Rowe. That work took me all over the Andes—by road, on horseback, and on foot—collecting native varieties of potatoes for the CIP genebank.

Screening potatoes in Turrialba, Costa Rica for resistance to bacterial wilt.

After successfully completing my PhD in December 1975, I transferred to CIP’s Outreach Program in Central America, moved to Costa Rica for the next 4½ years, and began research on potato diseases, adaptation of potatoes to warm climates, and seed production. This was quite a change from my thesis research, but I acquired valuable experience about many different aspects of potato production. I learnt to grow a crop of potatoes!

But this posting was not just about research. After a year, my regional leader (based in Mexico) moved to the USA to pursue his PhD, and CIP asked me to take over as regional research leader. Thus I began to develop an interest in and (if I might be permitted to say) a flair for research management. In this role I traveled extensively throughout Central America and Mexico, and the Caribbean Islands, and helped to found and establish one of the most enduring and successful research partnerships between national research programs and any international agricultural research institute: PRECODEPA.

Then, just as I was thinking about a move to CIP’s regional office in the Philippines (for Southeast Asia), an entirely different opportunity opened up, and we moved back to the UK.

Back to Birmingham
In January 1981 I successfully applied for a Lectureship in my old department (now named the Department of Plant Biology) at Birmingham. I said goodbye to CIP in March 1981, and embarked on the next stage of my career: teaching botany.

The lectureship had been created to ensure continuity of teaching in various aspects of the conservation and use of plant genetic resources (and other topics) after Professor Hawkes’ retirement in September 1982. I assumed his particular teaching load, in crop plant evolution and germplasm collecting on the MSc Course, and flowering plant taxonomy to second year undergraduates, as well as developing other courses at both undergraduate and graduate level.

In addition to my continuing research interest on potatoes I assembled a large collection of Lathyrus species and one PhD student from Malaysia made an excellent study of species relationships of the one cultivated species, the grasspea, L. sativus. I successfully supervised (or co-supervised) the theses of nine other PhD students (and at least a couple of dozen MSc students) during the decade I spent at Birmingham.

I generally enjoyed the teaching and interaction with students more than research. Having struggled as an undergraduate myself, I think I could empathise with students who found themselves in the same boat, so-to-speak. I took my tutor/tutee responsibilities very seriously. In fact, I did and still believe that providing appropriate and timely tutorial advice to undergraduates was one of the more important roles I had. My door was always open for tutees to drop by, to discuss any issues in addition to the more formal meetings we had on a fortnightly basis when we’d discuss some work they had prepared for me, and I gave feedback.

While I appreciate that university staff are under increasing pressures to perform nowadays (more research, more grants, more papers) I just cannot accept that many consider their tutor responsibilities so relatively unimportant, assigning just an hour or so a week (or less) when they make themselves accessible by their tutees.

The 1980s were a turbulent time in the UK. Politics were dominated by the Tories under Margaret Thatcher. And government policies came to significantly affect the higher education sector. By the end of the decade I was feeling rather disillusioned by university life, and although I was pretty confident of promotion to Senior Lecturer, I also knew that if any other opportunity came along, I would look at it seriously.

And in September 1990 just such an opportunity did come along, in the form of an announcement that IRRI was recruiting a head for the newly-created Genetic Resources Center.

Dr. Klaus Lampe

A return to international agriculture
It was early January 1991, and I was on a delayed flight to Hong Kong on my way to the Philippines for an interview. Arriving in Los Baños around 1 am (rather than 3 pm the previous afternoon), I had just a few hours sleep before a breakfast meeting with the Director General, Dr. Klaus Lampe and his two deputies. Severely jet-lagged, I guess I more or less sleep-walked through the next three days of interviews, as well as delivering a seminar. And the outcome? IRRI offered me the position at the end of January, and I moved to the Philippines on 1 July remaining there for almost 19 years.

For the first ten years, management of the International Rice Genebank (the world’s largest collection of rice varieties and wild species) was my main priority. I have written about many aspects of running a genebank in this blog, as well as discussing the dual roles of genebank management and scientific research. So I won’t repeat that here. Making sure the rice germplasm was safe and conserved in the genebank to the highest standards were the focus of my early efforts. We looked at better ways of growing diverse varieties in the single environment of IRRI’s Experiment Station, and overhauled the genebank data management system. We also spent time studying the diversity of rice varieties and wild species, eventually using a whole array of molecular markers and, in the process, establishing excellent collaboration with former colleagues at the University of Birmingham and the John Innes Centre in Norwich, UK.

Dr. Ron Cantrell

Then, one day in early 2001, IRRI’s Director General, Dr. Ron Cantrell, called me to his office, asking me to give up genebanking and join the institute’s senior management team as Director for Program Planning and Communications. As I said earlier, I really enjoyed management, but wasn’t sure I wanted to leave research (and genetic resources) behind altogether. But after some serious soul-searching, I did move across in May 2001 and remained in that position until my retirement in April 2010.

Even in that position, my background and experience in the plant sciences was invaluable. All research project proposals for example passed through my office for review and submission to various donors for funding. I was able not only look at the feasibility of any given project in terms of its objectives and proposed outcomes within the project timeframe, I could comment on many of the specific scientific aspects and highlight any inconsistencies. Because we had a well-structured project proposal development and submission process, the quality of IRRI projects increased, as well as the number that were successfully supported. IRRI’s budget increased to new levels, and confidence in the institute’s research strategy and agenda gained increased confidence among its donors.

What a good decision I made all those years ago to study botany. I achieved that early ambition to travel all over the world (>60 countries in connection with my work) in North and South America, Europe, Africa, Asia, and Australia. But the study (and use) of plants gave me so much more. I used the knowledge and experience gained to help transform lives of some of the poorest farmers and their families, by contributing to efforts to grow better yielding crops, more resilient to climate change, and resistant to diseases.

I’m sure that a degree in botany would be the last in many people’s minds as leading to so many opportunities such as I enjoyed. Knowing that opportunities are out there is one thing. Seizing those opportunities is quite another. And I seized them with both hands. I never looked back.

I should also mention that I also ascribe some of my success to having had excellent mentors—many mentioned in this piece—throughout my career to whom I could turn for advice. Thank you!


If you are interested, a list of my scientific output (papers, book, book chapters, conference presentations and the like) can be seen here.


 

Management and science – are they equally important roles for a genebank manager?

There’s an interesting article by Nicola Temple and Michael Major (science communications specialists for Scriptoria and the Crop Trust, respectively), on the Genebank Platform website, about Dr David Ellis who retired at the end of 2018 as head of the genebank at the International Potato Center (CIP) in Lima, Peru (where I began my career in international agricultural research in January 1973).

Titled David Ellis: Finding the balance between manager and scientist, the article describes David’s illustrious career, and highlights an important issue that many genebank managers face. Let me quote directly what they wrote:

David argues that genebank managers need to balance science with the management of their collections. “If you focus purely on the science, then management of the genebank suffers,” he says. “If you focus solely on being a genebank manager, then you are never viewed by your scientific peers as a research scientist and that can mean fewer opportunities for collaboration.”

His perspectives—which I fully endorse—resonated with me, and got me thinking about the time, almost 30 years ago, when I joined the International Rice Research Institute (IRRI) in the Philippines as Head of the newly-created Genetic Resources Center (GRC) with responsibility for (among other things) the internationally-important rice genebank, the International Rice Germplasm Center that, in the fullness of time, we renamed the International Rice Genebank. I was head of GRC for a decade, after which I changed roles at IRRI, and relinquishing all my genetic resources responsibilities.

A career in genetic resources
By July 1991, I’d already been working on the conservation and use of plant genetic resources for twenty years. I’d studied at the University of Birmingham under Professor Jack Hawkes and Professor Trevor Williams, and had forged a career at CIP (in Peru and Central America) for over eight years, before returning to Birmingham to join the faculty of the School of Biological Sciences (helping to train the next generation of germplasm scientists).

However, until joining IRRI, I’d never managed a genebank.

I first heard about the job at IRRI in September 1990, when a position announcement landed on my desk in the morning post. I was intrigued. Who had sent this to me? At the same time, the thought of running a genebank was rather attractive, because by 1990 I had become somewhat disillusioned with academic life.

The IRRI position represented an opportunity to return to international agricultural research that I had enjoyed during my years with CIP from 1973-1981.

As initially advertised, the Head of the Genetic Resources Center position was described merely as a service role with no assigned research responsibilities whatsoever. The Head would report directly to the Deputy Director General (International Programs)—not the DDG (Research).

On the positive side, however, the position would be equivalent to other Division Heads and Program Leaders giving the incumbent an opportunity to represent the genebank directly in institute management discussions.

Having sent in my application, I traveled to the Philippines in early January 1991 for an interview, and was offered the position three weeks later. During the interview(s), and in the subsequent negotiations to iron out the terms and conditions of my appointment, I made it a condition of accepting that I (and my future GRC staff) would have a research role. Indeed, without that commitment and support from senior management, I was not interested in the position. I can be persuasive. My viewpoint prevailed!

Learning about genebanking – on the job
Management and science are almost equally important roles. But not quite. Management and safety of any genebank collection (including making it available to users worldwide) must always be the top priority.

Dr TT Chang

Before 1991 there had been just one person—eminent rice geneticist and upland rice breeder, Dr TT Chang—as head of the genebank for about thirty years. Very quickly I realised that some important changes must be made, and the best known genebank practices and standards adopted. And that’s where I focused my efforts for the first three years of my tenure in GRC.

Initially I had to immerse myself in how the genebank was being managed, especially in terms of staffing needs and people management, and to develop a plan to make it run much more efficiently. That meant identifying and appointing staff to lead critical functions in the genebank like seed conservation, field operations (multiplication of genebank accessions and rejuvenation), characterization, or data management. Finding or assigning existing staff for the right roles.

What I did find was a highly motivated and professional staff who had never received any real guidance as to their roles, nor had they been given any specific responsibilities. As a consequence, productivity was rather low, as different members of staff overlapped in their day-to-day activities, sometimes at cross purposes.

It took me about six months to understand just how the genebank functioned, and how many operations needed to be updated. But I also had the tricky task of ‘side-lining’ the most senior of the national staff, Eves Loresto, from the line of communication to me from other staff members. She had been Dr Chang’s assistant, and nothing reached him from the staff unless it passed through her first. This was, I felt, an obvious obstacle to accomplishing the necessary changes to staff roles and productivity. Ultimately I found her an important role in leading various components of an externally-funded biodiversity project (by the Swiss government) that I couldn’t have managed on my own.

It took about three years, but we overhauled almost everything that the genebank did (and producing an important manual of genebank operations, something that all CGIAR genebanks are now expected to have). One of the key problem areas was data management, a complete nightmare, as I have described elsewhere on my blog.

We brought all field operations back on to the IRRI Experiment Station, and through investment in facilities, we were able to remodel and upgrade the genebank cold stores, the seed testing laboratory, and germplasm handling protocols for responding efficiently to requests for rice germplasm, in conjunction with the Seed Health Unit which handled all aspects of quarantine and phytosanitary certification for import and export of rice seeds.

We also made sure that the collection was fully duplicated at the USDA National Laboratory for Genetic Resources Preservation in Fort Collins, CO, an initiative that had begun under my predecessor, but needed acceleration.

By the time of the first CGIAR system-wide review of genebanks that was completed in 1994-95, IRRI’s genebank was rated as ‘a model for others to emulate‘. While IRRI did invest in the genebank (improved configuration of storage rooms, laboratories, seed drying, etc.), much of what we achieved in the genebank did not actually require much additional or even special funding. Just a realignment of the way the genebank operated. And a lot of hard work by great staff to make the necessary improvements. I can’t stress too much how important it was to have the staff onside, and spending much effort in people management, including having more than 70% of all positions in GRC upgraded and staff promoted.

You can see much of how the genebank operates in this video below. And while it’s true that my successor, Dr Ruaraidh Sackville Hamilton built on the improvements made during the 1990s, we achieved the current genebank standards, and this permitted IRRI to move to the next level and meet its obligations and performance targets under the current funding structure of the Genebank Platform.

As the staff grew into their roles in the genebank, there was more opportunity to reach out to national rice programs around Asia, as well in Africa and Latin America. We helped train a large cadre of national scientists in genebank data management and, to accompany germplasm collecting, we offered practical workshops. National programs then shared collected germplasm with IRRI, and the size of the International Rice Genebank Collection grew by about 25% between 1995 and 2000. Overall, there were 48 courses in 14 countries. For details, see the project final report.

Turning to research
In July 1991, GRC had essentially no research profile whatsoever. Just a few minor studies, tinkering around the edges of research. From 1994 or thereabouts, that all changed. We invested time, people, and funds to:

  • Study the effects of seed production environment and seed quality and survival in storage;
  • Understand the diversity of rice using molecular markers;
  • Clarify the taxonomy of rice species, primarily those most closely related to Oryza sativa, the rice grown widely around the world; and
  • Understand the dynamics of rice conservation by farmers from the joint perspectives of population genetics and social anthropology.

Because we started from such a low base, I decided to forge important collaborations with several research groups to kick-start our research efforts.

Dr Kameswara Rao

In terms of seed production (and seed conservation), we had an excellent collaboration with Professor Richard Ellis at the University of Reading in the UK. We also hired a postdoc, Dr Kameswara Rao (from ICRISAT in Hyderabad, India) to work at IRRI on these joint projects. Kameswara had completed his PhD at Reading under the supervision of Professor Eric Roberts. After leaving IRRI, Kameswara joined the genebank program at the International Center for Biosaline Agriculture in Dubai, UAE; he has since retired.

Dr Parminder Virk

The use of molecular markers to study crop diversity was in its infancy in the early 1990s, although as I pointed out in a recent blog post, a number of molecular approaches had been used during the 1980s and earlier in different labs. We partnered with my former colleagues at the University of Birmingham, Professors Brian Ford-Lloyd and John Newbury (now retired) and Dr Parminder Virk (who eventually joined IRRI as a rice breeder and is now with the HarvestPlus program in India), in collaboration with the late Professor Mike Gale’s group at the John Innes Centre in Norwich.

These were highly effective collaborations, and we also built up our in-house capacity by sending one of the GRC staff for short-term training at Birmingham (sponsored by the British Council) while developing a molecular marker laboratory in GRC.

We undertook all taxonomy research in-house, and hired Dr Lu Bao-Rong from China to lead this effort. We also assigned two staff full-time to the molecular and taxonomy research, and support staff as well.

The on-farm conservation research was one component of the Swiss-funded biodiversity project I referred to earlier. One scientist, Dr Jean-Louis Pham came to IRRI from the French public research institution IRD in Montpellier to head the on-farm group.

I think we accomplished a great deal in the decade I was in charge of the International Rice Genebank. We established a solid foundation to take the genebank forward over the next two decades. I have listed below most of the GRC publications that appeared during this period. Links to PDF files of many of the papers can be found here.

The molecular marker and genomics research was strengthened in 2001 (as I was coming to the end of my tenure in GRC) with the appointment of Dr Ken McNally.

Dr Ken McNally and Dr Fiona Hay

Around 2002 a seed physiologist, Dr Fiona Hay, joined GRC and although she has now moved to Aarhus University in Denmark, her research on seed drying and storage contributed significantly towards safeguarding this valuable germplasm collection.

Looking back on the 1990s, I think GRC can be proud of its research output. We did, as David Ellis proposed, establish our scientific credibility and, in a number of forums, took that message out to the wider scientific community and the public at large. Always, however, knowing that the genebank collection was safe for the long term, and available and accessible to everyone around the world who had need of germplasm to improve rice—which is, after all, the world’s most important staple crop.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Genebank management (papers in peer-reviewed journals are shown in red, book chapter in blue)
Alcantara, A.P., E.B. Guevarra & M.T. Jackson, 1999. The International Rice Genebank Collection Information System. Poster presented at the annual meeting of the Crop Science Society of America, Salt Lake City, October 31-November 4, 1999.

Ford-Lloyd, B.V., M.T. Jackson & H.J. Newbury, 1997. Molecular markers and the management of genetic resources in seed genebanks: a case study of rice. In: J.A. Callow, B.V. Ford-Lloyd & H.J. Newbury (eds.), Biotechnology and Plant Genetic Resources: Conservation and Use. CAB International, Wallingford, pp. 103-118. 

Hunt, E.D., M.T. Jackson, M. Oliva & A. Alcantara, 1993. Employing geographical information systems (GIS) for conserving and using rice germplasm. Poster presented at the 17th International Congress of Genetics, Birmingham, U.K., August 15-21, 1993. Volume of abstracts, 117.

Jackson, M.T. & G.C. Loresto, 1996. The role of the International Rice Research Institute (IRRI) in supporting national and regional programs. Invited paper presented at the Asia-Pacific Consultation Meeting on Plant Genetic Resources, held in New Delhi, India, November 27-29, 1996.

Jackson, M.T. & R.D. Huggan, 1993. Sharing the diversity of rice to feed the world. Diversity 9, 22-25.

Jackson, M.T. & R.D. Huggan, 1996. Pflanzenvielfalt als Grundlage der Welternährung. Bulletin—das magazin der Schweizerische Kreditanstalt SKA. March/April 1996, 9-10.

Jackson, M.T. & R.J.L. Lettington, 2003. Conservation and use of rice germplasm: an evolving paradigm under the International Treaty on Plant Genetic Resources for Food and Agriculture. In: Sustainable rice production for food security. Proceedings of the 20th Session of the International Rice Commission. Bangkok, Thailand, 23-26 July 2002.
http://www.fao.org/DOCREP/006/Y4751E/y4751e07.htm#bm07. Invited paper. 

Jackson, M.T., 1993. Biotechnology and the conservation and use of plant genetic resources. Invited paper presented at the Workshop on Biotechnology in Developing Countries, held at the 17th International Congress of Genetics, Birmingham, U.K., August 15-21, 1993.

Jackson, M.T., 1994. Care for and use of biodiversity in rice. Invited paper presented at the Symposium on Food Security in Asia, held at the Royal Society, London, November 1, 1994.

Jackson, M.T., 1994. Ex situ conservation of plant genetic resources, with special reference to rice. In: G. Prain & C. Bagalanon (eds.), Local Knowledge, Global Science and Plant Genetic Resources: towards a partnership. Proceedings of the International Workshop on Genetic Resources, UPWARD, Los Baños, Philippines, pp. 11-22.

Jackson, M.T., 1994. Preservation of rice strains. Nature 371, 470.

Jackson, M.T., 1995. Protecting the heritage of rice biodiversity. GeoJournal 35, 267-274. 

Jackson, M.T., 1995. The international crop germplasm collections: seeds in the bank! Invited paper presented at the meeting Economic and Policy Research for Genetic Resources Conservation and Use: a Technical Consultation, held at IFPRI, Washington, D.C., June 21-22, 1995

Jackson, M.T., 1996. Intellectual property rights—the approach of the International Rice Research Institute. Invited paper presented at the Satellite Symposium on Biotechnology and Biodiversity: Scientific and Ethical Issues, held in New Delhi, India, November 15-16, 1996.

Jackson, M.T., 1997. Conservation of rice genetic resources—the role of the International Rice Genebank at IRRI. Plant Molecular Biology 35, 61-67. 

Jackson, M.T., 1998. Intellectual property rights—the approach of the International Rice Research Institute. Invited paper at the Seminar-Workshop on Plant Patents in Asia Pacific, organized by the Asia & Pacific Seed Association (APSA), held in Manila, Philippines, September 21-22, 1998.

Jackson, M.T., 1998. Recent developments in IPR that have implications for the CGIAR. Invited paper presented at the ICLARM Science Day, International Center for Living Aquatic Resources Management, Manila, Philippines, September 30, 1998.

Jackson, M.T., 1998. The role of the CGIAR’s System-wide Genetic Resources Programme (SGRP) in implementing the GPA. Invited paper presented at the Regional Meeting for Asia and the Pacific to facilitate and promote the implementation of the Global Plan of Action for the Conservation and Sustainable Use of Plant Genetic Resources for Food and Agriculture, held in Manila, Philippines, December 15-18, 1998.

Jackson, M.T., 1999. Managing genetic resources and biotechnology at IRRI’s rice genebank. In: J.I. Cohen (ed.), Managing Agricultural Biotechnology – Addressing Research Program and Policy Implications. International Service for National Agricultural Research (ISNAR), The Hague, Netherlands and CAB International, UK, pp. 102-109. 

Jackson, M.T., 1999. Managing the world’s largest collection of rice genetic resources. In: J.N. Rutger, J.F. Robinson & R.H. Dilday (eds.), Proceedings of the International Symposium on Rice Germplasm Evaluation and Enhancement, held at the Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, USA, August 30-September 2, 1998. Arkansas Agricultural Experiment Station Special Report 195.

Jackson, M.T., 2004. Achieving the UN Millennium Development Goals begins with rice research. Invited paper presented to the Cross Party International Development Group of the Scottish Parliament, Edinburgh, Scotland, June 2, 2004.

Jackson, M.T., A. Alcantara, E. Guevarra, M. Oliva, M. van den Berg, S. Erguiza, R. Gallego & M. Estor, 1995. Documentation and data management for rice genetic resources at IRRI. Paper presented at the Planning Meeting for the System-wide Information Network for Genetic Resources (SINGER), held at CIMMYT, Mexico, October 2-6, 1995.

Jackson, M.T., B.R. Lu, G.C. Loresto & F. de Guzman, 1995. The conservation of rice genetic resources at the International Rice Research Institute. Paper presented at the International Symposium on Research and Utilization of Crop Germplasm Resources held in Beijing, People’s Republic of China, June 1-3, 1995.

Jackson, M.T., F.C. de Guzman, R.A. Reaño, M.S.R. Almazan, A.P. Alcantara & E.B. Guevarra, 1999. Managing the world’s largest collection of rice genetic resources. Poster presented at the annual meeting of the Crop Science Society of America, Salt Lake City, October 31-November 4, 1999.

Jackson, M.T., G.C. Loresto & A.P. Alcantara, 1993. The International Rice Germplasm Center at IRRI. In: The Egyptian Society of Plant Breeding (1993). Crop Genetic Resources in Egypt: Present Status and Future Prospects. Papers of an ESPB Workshop, Giza, Egypt, March 2-3, 1992.

Jackson, M.T., G.C. Loresto & F. de Guzman, 1996. Partnership for genetic conservation and use: the International Rice Genebank at the International Rice Research Institute (IRRI). Poster presented at the Beltsville Symposium XXI on Global Genetic Resources—Access, Ownership, and Intellectual Property Rights, held in Beltsville, Maryland, May 19-22, 1996.

Jackson, M.T., G.C. Loresto, S. Appa Rao, M. Jones, E. Guimaraes & N.Q. Ng, 1997. Rice. In: D. Fuccillo, L. Sears & P. Stapleton (eds.), Biodiversity in Trust: Conservation and Use of Plant Genetic Resources in CGIAR Centres. Cambridge University Press, pp. 273-291. 

Jackson, M.T., J.L. Pham, H.J. Newbury, B.V. Ford-Lloyd & P.S. Virk, 1999. A core collection for rice—needs, opportunities and constraints. In: R.C. Johnson & T. Hodgkin (eds.), Core collections for today and tomorrow. International Plant Genetic Resources Institute, Rome, Italy, pp. 18-27.

Koo, B., P.G. Pardey & M.T. Jackson, 2004. IRRI Genebank. In: B. Koo, P.G. Pardey, B.D. Wright and others, Saving Seeds – The Economics of Conserving Crop Genetic Resources Ex Situ in the Future Harvest Centres of the CGIAR. CABI Publishing, Wallingford, pp. 89-103. 

Loresto, G.C. & M.T. Jackson, 1992. Rice germplasm conservation: a program of international collaboration. In: F. Cuevas-Pérez (ed.), Rice in Latin America: Improvement, Management, and Marketing. Proceedings of the VIII international rice conference for Latin America and the Caribbean, held in Villahermosa, Tabasco, Mexico, November 10-16, 1991. Centro Internacional de Agricultura Tropical, Cali, Colombia, pp. 61-65.

Loresto, G.C. & M.T. Jackson, 1996. South Asia partnerships forged to conserve rice genetic resources. Diversity 12, 60-61.

Loresto, G.C., E. Guevarra & M.T. Jackson, 2000. Use of conserved rice germplasm. Plant Genetic Resources Newsletter 124, 51-56. 

Lu, B.R., A. Juliano, E. Naredo & M.T. Jackson, 1995. The conservation and study of wild Oryza species at the International Rice Research Institute. Paper presented at the International Symposium on Research and Utilization of Crop Germplasm Resources held in Beijing, People’s Republic of China, June 1-3, 1995.

Newbury, H.J., B.V. Ford-Lloyd, P.S. Virk, M.T. Jackson, M.D. Gale & J.-H. Zhu, 1996. Molecular markers and their use in organising plant germplasm collections. In: E.M. Young (ed.), Plant Sciences Research Programme Conference on Semi-Arid Systems. Proceedings of an ODA Plant Sciences Research Programme Conference , Manchester, UK, September 5-6, 1995, pp. 24-25.

Vaughan, D.A. & M.T. Jackson, 1995. The core as a guide to the whole collection. In: T. Hodgkin, A.H.D. Brown, Th.J.L. van Hintum & E.A.V. Morales (eds.), Core Collections of Plant Genetic Resources. John Wiley & Sons, Chichester, pp. 229-239. 

Germplasm collection
Appa Rao, S., C. Bounphanousay, J.M. Schiller & M.T. Jackson, 2002. Collection, classification, and conservation of cultivated and wild rices of the Lao PDR. Genetic Resources and Crop Evolution 49, 75-81. 

Appa Rao, S., C. Bounphanousay, K. Kanyavong, B. Sengthong, J.M. Schiller & M.T. Jackson, 1999. Collection and classification of Lao rice germplasm, Part 4. Collection Period: September to December 1998. Internal report of the National Agricultural Research Center, National Agriculture and Forestry Research Institute, Ministry of Agriculture and Forestry, Vientiane, Lao PDR, and Genetic Resources Center, International Rice Research Institute (IRRI), Los Baños, Philippines.

Appa Rao, S., C. Bounphanousay, K. Kanyavong, V. Phetpaseuth, B. Sengthong, J.M. Schiller, S. Thirasack & M.T. Jackson, 1997. Collection and classification of rice germplasm from the Lao PDR. Part 2. Northern, Southern and Central Regions. Internal report of the National Agricultural Research Center, Department of Agriculture and Extension, Ministry of Agriculture and Forestry, Vientiane, Lao PDR, and Genetic Resources Center, International Rice Research Institute (IRRI), Los Baños, Philippines.

Appa Rao, S., C. Bounphanousay, V. Phetpaseuth, K. Kanyavong, B. Sengthong, J. M. Schiller, V. Phannourath & M.T. Jackson, 1996. Collection and classification of rice germplasm from the Lao PDR. Part 1. Southern and Central Regions – 1995. Internal report of the National Agricultural Research Center, Dept. of Agriculture and Extension, Ministry of Agriculture and Forestry, Vientiane, Lao PDR, and Genetic Resources Center, International Rice Research Institute (IRRI), Los Baños, Philippines.

Appa Rao, S., C. Bounphanousay, V. Phetpaseuth, K. Kanyavong, B. Sengthong, J.M. Schiller & M.T. Jackson, 1998. Collection and Classification of Lao Rice Germplasm Part 3. Collecting Period – October 1997 to February 1998. Internal report of the National Agricultural Research Center, National Agriculture and Forestry Research Institute, Ministry of Agriculture and Forestry, Vientiane, Lao PDR, and Genetic Resources Center, International Rice Research Institute (IRRI), Los Baños, Philippines.

Appa Rao, S., C. Bounphanouxay, J.M. Schiller & M.T. Jackson, 1999. Collecting Rice Genetic Resources in the Lao PDR. Poster presented at the annual meeting of the Crop Science Society of America, Salt Lake City, October 31-November 4, 1999.

Appa Rao, S., C. Bounphanouxay, V. Phetpaseut, J.M. Schiller, V. Phannourath & M.T. Jackson, 1997. Collection and preservation of rice germplasm from southern and central regions of the Lao PDR. Lao Journal of Agriculture and Forestry 1, 43-56. 

Dao The Tuan, Nguyen Dang Khoi, Luu Ngoc Trinh, Nguyen Phung Ha, Nguyen Vu Trong, D.A. Vaughan & M.T. Jackson, 1995. INSA-IRRI collaboration on wild rice collection in Vietnam. In: G.L. Denning & Vo-Tong Xuan (eds.), Vietnam and IRRI: A partnership in rice research. International Rice Research Institute, Los Baños, Philippines, and Ministry of Agriculture and Food Industry, Hanoi, Vietnam, pp. 85-88.

Jackson, M.T., 2001. Collecting plant genetic resources: partnership or biopiracy. Invited paper presented at the annual meeting of the Crop Science Society of America, Charlotte, North Carolina, October 21-24, 2001.

Kiambi, D.K., B.V. Ford-Lloyd, M.T. Jackson, L. Guarino, N. Maxted & H.J. Newbury, 2005. Collection of wild rice (Oryza L.) in east and southern Africa in response to genetic erosion. Plant Genetic Resources Newsletter 142, 10-20. 

Seed conservation and regeneration
Ellis, R.H. & M.T. Jackson, 1995. Accession regeneration in genebanks: seed production environment and the potential longevity of seed accessions. Plant Genetic Resources Newsletter 102, 26-28. 

Ellis, R.H., T.D. Hong & M.T. Jackson, 1993. Seed production environment, time of harvest, and the potential longevity of seeds of three cultivars of rice (Oryza sativa L.). Annals of Botany 72, 583-590. 

Kameswara Rao, N. & M.T. Jackson, 1995. Seed production strategies for conservation of rice genetic resources. Poster presented at the Fifth International Workshop on Seeds, University of Reading, September 11-15, 1995.

Kameswara Rao, N. & M.T. Jackson, 1996. Effect of sowing date and harvest time on longevity of rice seeds. Seed Science Research 7, 13-20. 

Kameswara Rao, N. & M.T. Jackson, 1996. Seed longevity of rice cultivars and strategies for their conservation in genebanks. Annals of Botany 77, 251-260. 

Kameswara Rao, N. & M.T. Jackson, 1996. Seed production environment and storage longevity of japonica rices (Oryza sativa L.). Seed Science Research 6, 17-21. 

Kameswara Rao, N. & M.T. Jackson, 1997. Variation in seed longevity of rice cultivars belonging to different isozyme groups. Genetic Resources and Crop Evolution 44, 159-164. 

Naredo, M.E.B., A.B. Juliano, B.R. Lu, F. de Guzman & M.T. Jackson, 1998. Responses to seed dormancy-breaking treatments in rice species (Oryza L.). Seed Science and Technology 26, 675-689. 

Reaño, R., M.T. Jackson, F. de Guzman, S. Almazan & G.C. Loresto, 1995. The multiplication and regeneration of rice germplasm at the International Rice Genebank, IRRI. Paper presented at the Discussion Meeting on Regeneration Standards, held at ICRISAT, Hyderabad, India, December 4-7, 1995, sponsored by IPGRI, ICRISAT and FAO.

On-farm conservation
Appa Rao, S., J.M. Schiller, C. Bounphanousay & M.T. Jackson, 2006. Development of traditional rice varieties and on-farm management of varietal diversity in Laos. In: J.M. Schiller, M.B. Chanphengxay, B. Linquist & S. Appa Rao (eds.), Rice in Laos. Los Baños (Philippines): International Rice Research Institute, pp. 187-196. 

Bellon, M.R., J.L. Pham & M.T. Jackson, 1997. Genetic conservation: a role for rice farmers. In: N. Maxted, B.V. Ford-Lloyd & J.G. Hawkes (eds.), Plant Genetic Conservation: the In Situ Approach. Chapman & Hall, London, pp. 263-289. 

Jackson, M.T., 2001. Rice: diversity and livelihood for farmers in Asia. Invited paper presented in the symposium Cultural Heritage and Biodiversity, at the annual meeting of the Crop Science Society of America, Charlotte, North Carolina, October 21-24, 2001.

Morin, S.R., J.L. Pham, M. Calibo, G. Abrigo, D. Erasga, M. Garcia, & M.T. Jackson, 1998. On farm conservation research: assessing rice diversity and indigenous technical knowledge. Invited paper presented at the Workshop on Participatory Plant Breeding, held in New Delhi, March 23-24, 1998.

Morin, S.R., J.L. Pham, M. Calibo, M. Garcia & M.T. Jackson, 1998. Catastrophes and genetic diversity: creating a model of interaction between genebanks and farmers. Paper presented at the FAO meeting on the Global Plan of Action on Plant Genetic Resources for Food and Agriculture for the Asia-Pacific Region, held in Manila, Philippines, December 15-18, 1998.

Pham J.L., S.R. Morin & M.T. Jackson, 2000. Linking genebanks and participatory conservation and management. Invited paper presented at the International Symposium on The Scientific Basis of Participatory Plant Breeding and Conservation of Genetic Resources, held at Oaxtepec, Morelos, Mexico, October 9-12, 2000.

Pham, J.L., M.R. Bellon & M.T. Jackson, 1995. A research program on on-farm conservation of rice genetic resources. Poster presented at the Third International Rice Genetics Symposium, Manila, Philippines, October 16-20, 1995.

Pham, J.L., M.R. Bellon & M.T. Jackson, 1996. A research program for on-farm conservation of rice genetic resources. International Rice Research Notes 21, 10-11.

Pham, J.L., M.R. Bellon & M.T. Jackson, 1996. What is on-farm conservation research on rice genetic resources? In: J.T. Williams, C.H. Lamoureux & S.D. Sastrapradja (eds.), South East Asian Plant Genetic Resources. Proceedings of the Third South East Asian Regional Symposium on Genetic Resources, Serpong, Indonesia, August 22-24, 1995, pp. 54-65.

Pham, J.L., S.R. Morin, L.S. Sebastian, G.A. Abrigo, M.A. Calibo, S.M. Quilloy, L. Hipolito & M.T. Jackson, 2002. Rice, farmers and genebanks: a case study in the Cagayan Valley, Philippines. In: J.M.M. Engels, V.R. Rao, A.H.D. Brown & M.T. Jackson (eds.), Managing Plant Genetic Diversity. CAB International, Wallingford, pp. 149-160. 

Taxonomy of rice species
Aggarwal, R.K., D.S. Brar, G.S. Khush & M.T. Jackson, 1996. Oryza schlechteri Pilger has a distinct genome based on molecular analysis. Rice Genetics Newsletter 13, 58-59.

Juliano, A.B., M.E.B. Naredo & M.T. Jackson, 1998. Taxonomic status of Oryza glumaepatula Steud. I. Comparative morphological studies of New World diploids and Asian AA genome species. Genetic Resources and Crop Evolution 45, 197-203. 

Juliano, A.B., M.E.B. Naredo, B.R. Lu & M.T. Jackson, 2005. Genetic differentiation in Oryza meridionalis Ng based on molecular and crossability analyses. Genetic Resources and Crop Evolution 52, 435-445. 

Lu, B.R., M.E. Naredo, A.B. Juliano & M.T. Jackson, 1998. Biosystematic studies of the AA genome Oryza species (Poaceae). Poster presented at the Second International Conference on the Comparative Biology of the Monocotyledons and Third International Symposium on Grass Systematics and Evolution, Sydney, Australia, September 27-October 2, 1998.

Lu, B.R., M.E.B. Naredo, A.B. Juliano & M.T. Jackson, 1997. Hybridization of AA genome rice species from Asia and Australia. II. Meiotic analysis of Oryza meridionalis and its hybrids. Genetic Resources and Crop Evolution 44, 25-31. 

Lu, B.R., M.E.B. Naredo, A.B. Juliano & M.T. Jackson, 1998. Taxonomic status of Oryza glumaepatula Steud. III. Assessment of genomic affinity among AA genome species from the New World, Asia, and Australia. Genetic Resources and Crop Evolution 45, 215-223. 

Lu, B.R., M.E.B. Naredo, A.B. Juliano & M.T. Jackson, 2000. Preliminary studies on the taxonomy and biosystematics of the AA genome Oryza species (Poaceae). In: S.W.L. Jacobs & J. Everett (eds.), Grasses: Systematics and Evolution. CSIRO: Melbourne, pp. 51-58. 

Naredo, M.E., A.B. Juliano, M.S. Almazan, B.R. Lu & M.T. Jackson, 2000. Morphological and molecular diversity of AA genome species of rice. Poster presented at the annual meeting of the Crop Science Society of America, Minneapolis, November 5-9, 2000.

Naredo, M.E.B., A.B. Juliano, B.R. Lu & M.T. Jackson, 1997. Hybridization of AA genome rice species from Asia and Australia. I. Crosses and development of hybrids. Genetic Resources and Crop Evolution 44, 17-23. 

Naredo, M.E.B., A.B. Juliano, B.R. Lu & M.T. Jackson, 1998. Taxonomic status of Oryza glumaepatula Steud. II. Hybridization between New World diploids and AA genome species from Asia and Australia. Genetic Resources and Crop Evolution 45, 205-214. 

Naredo, M.E.B., A.B. Juliano, B.R. Lu & M.T. Jackson, 2003. The taxonomic status of the wild rice species Oryza ridleyi Hook. f. and O. longiglumis Jansen (Ser. Ridleyanae Sharma et Shastry) from Southeast Asia. Genetic Resources and Crop Evolution. Genetic Resources and Crop Evolution 50, 477-488. 

Rao, S.A, M.T. Jackson, V Phetpaseuth & C. Bounphanousay, 1997. Spontaneous interspecific hybrids in Oryza in the Lao PDR. International Rice Research Notes 22, 4-5.

The diversity of rice
Appa Rao, S., C. Bounphanousay, J.M. Schiller & M.T. Jackson, 2002. Naming of traditional rice varieties by farmers in the Lao PDR. Genetic Resources and Crop Evolution 49, 83-88. 

Appa Rao, S., C. Bounphanousay, J.M. Schiller, M.T. Jackson, P. Inthapanya & K. Douangsila. 2006. The aromatic rice of Laos. In: J.M. Schiller, M.B. Chanphengxay, B. Linquist & S. Appa Rao (eds.), Rice in Laos. Los Baños (Philippines): International Rice Research Institute, pp. 159-174. 

Appa Rao, S., J.M. Schiller, C. Bounphanousay & M.T. Jackson. 2006. Diversity within the traditional rice varieties of Laos. In: J.M. Schiller, M.B. Chanphengxay, B. Linquist & S. Appa Rao (eds.), Rice in Laos. Los Baños (Philippines): International Rice Research Institute, pp. 123-140. 

Appa Rao, S., J.M. Schiller, C. Bounphanousay, A.P. Alcantara & M.T. Jackson. 2006. Naming of traditional rice varieties by the farmers of Laos. In: J.M. Schiller, M.B. Chanphengxay, B. Linquist & S. Appa Rao (eds.), Rice in Laos. Los Baños (Philippines): International Rice Research Institute, pp. 141-158. 

Appa Rao, S., J.M. Schiller, C. Bounphanousay, P. Inthapanya & M.T. Jackson. 2006. The colored pericarp (black) rice of Laos. In: J.M. Schiller, M.B. Chanphengxay, B. Linquist & S. Appa Rao (eds.), Rice in Laos. Los Baños (Philippines): International Rice Research Institute, pp. 175-186. 

Cabanilla, V.R., M.T. Jackson & T.R. Hargrove, 1993. Tracing the ancestry of rice varieties. Poster presented at the 17th International Congress of Genetics, Birmingham, U.K., August 15-21, 1993. Volume of abstracts, 112-113.

Cohen, M.B., M.T. Jackson, B.R. Lu, S.R. Morin, A.M. Mortimer, J.L. Pham & L.J. Wade, 1999. Predicting the environmental impact of transgene outcrossing to wild and weedy rices in Asia. In: 1999 PCPC Symposium Proceedings No. 72: Gene flow and agriculture: relevance for transgenic crops. Proceedings of a Symposium held at the University of Keele, Staffordshire, U.K., April 12-14, 1999. pp. 151-157.

Ford-Lloyd, B.V., D. Brar, G.S. Khush, M.T. Jackson & P.S. Virk, 2008. Genetic erosion over time of rice landrace agrobiodiversity. Plant Genetic Resources: Characterization and Utilization 7(2), 163-168. 

Ford-Lloyd, B.V., H.J. Newbury, M.T. Jackson & P.S. Virk, 2001. Genetic basis for co-adaptive gene complexes in rice (Oryza sativa L.) landraces. Heredity 87, 530-536. 

Jackson, M.T., 1998. The genetics of genetic conservation. Invited paper presented at the Fifth National Genetics Symposium, held at PhilRice, Nueva Ecija, Philippines, December 10-12, 1998.

Jackson, M.T., B.R. Lu, M.S. Almazan, M.E. Naredo & A.B. Juliano, 2000. The wild species of rice: conservation and value for rice improvement. Poster presented at the annual meeting of the Crop Science Society of America, Minneapolis, November 5-9, 2000.

Jackson, M.T., E.L. Javier & C.G. McLaren, 1999. Rice genetic resources for food security. Invited paper at the IRRI Symposium, held at the annual meeting of the Crop Science Society of America, Salt Lake City, October 31-November 4, 1999.

Jackson, M.T., E.L. Javier & C.G. McLaren, 2000. Rice genetic resources for food security: four decades of sharing and use. In: W.G. Padolina (ed.), Plant Variety Protection for Rice in Developing Countries. Limited proceedings of the workshop on the Impact of Sui Generis Approaches to Plant Variety Protection in Developing Countries. February 16-18, 2000, IRRI, Los Baños, Philippines. International Rice Research Institute, Makati City, Philippines. pp. 3-8.

Martin, C., A. Juliano, H.J. Newbury, B.R. Lu, M.T. Jackson & B.V. Ford-Lloyd, 1997. The use of RAPD markers to facilitate the identification of Oryza species within a germplasm collection. Genetic Resources and Crop Evolution 44, 175-183. 

Newbury, H.J., P. Virk, M.T. Jackson, G. Bryan, M. Gale & B.V. Ford-Lloyd, 1993. Molecular markers and the analysis of diversity in rice. Poster presented at the 17th International Congress of Genetics, Birmingham, U.K., August 15-21, 1993. Volume of abstracts, 121-122.

Parsons, B., H.J. Newbury, M.T. Jackson & B.V. Ford-Lloyd, 1999. The genetic structure and conservation of aus, aman and boro rices from Bangladesh. Genetic Resources and Crop Evolution 46, 587-598. 

Parsons, B.J., B.V. Ford-Lloyd, H.J. Newbury & M.T. Jackson, 1994. Use of PCR-based markers to assess genetic diversity in rice landraces from Bhutan and Bangladesh. Poster presented at the Annual Meeting of the British Ecological Society, held at The University of Birmingham, December 1994.

Parsons, B.J., H.J. Newbury, M.T. Jackson & B.V. Ford-Lloyd, 1997. Contrasting genetic diversity relationships are revealed in rice (Oryza sativa L.) using different marker types. Molecular Breeding 3, 115-125. 

Virk, P., B.V. Ford-Lloyd, M.T. Jackson & H.J. Newbury, 1994. The use of RAPD analysis for assessing diversity within rice germplasm. Paper presented at the Annual Meeting of the British Ecological Society, held at The University of Birmingham, December 1994.

Virk, P.S., B.V. Ford-Lloyd, M.T. Jackson & H.J. Newbury, 1995. Use of RAPD for the study of diversity within plant germplasm collections. Heredity 74, 170-179. 

Virk, P.S., B.V. Ford-Lloyd, M.T. Jackson, H.S. Pooni, T.P. Clemeno & H.J. Newbury, 1996. Marker-assisted prediction of agronomic traits using diverse rice germplasm. In: International Rice Research Institute, Rice Genetics III. Proceedings of the Third International Rice Genetics Symposium, Manila, Philippines, October 16-20, 1995, pp. 307-316.

Virk, P.S., B.V. Ford-Lloyd, M.T. Jackson, H.S. Pooni, T.P. Clemeno & H.J. Newbury, 1996. Predicting quantitative variation within rice using molecular markers. Heredity 76, 296-304. 

Virk, P.S., H.J. Newbury, M.T. Jackson & B.V. Ford-Lloyd, 1995. The identification of duplicate accessions within a rice germplasm collection using RAPD analysis. Theoretical and Applied Genetics 90, 1049-1055. 

Virk, P.S., H.J. Newbury, M.T. Jackson & B.V. Ford-Lloyd, 2000. Are mapped markers more useful for assessing genetic diversity? Theoretical and Applied Genetics 100, 607-613. 

Virk, P.S., H.J. Newbury, Y. Shen, M.T. Jackson & B.V. Ford-Lloyd, 1996. Prediction of agronomic traits in diverse germplasm of rice and beet using molecular markers. Paper presented at the Fourth International Plant Genome Conference, held in San Diego, California, January 14-18, 1996.

Virk, P.S., J. Zhu, H.J. Newbury, G.J. Bryan, M.T. Jackson & B.V. Ford-Lloyd, 2000. Effectiveness of different classes of molecular marker for classifying and revealing variation in rice (Oryza sativa) germplasm. Euphytica 112, 275-284. 

Zhu, J., M.D. Gale, S. Quarrie, M.T. Jackson & G.J. Bryan, 1998. AFLP markers for the study of rice biodiversity. Theoretical and Applied Genetics 96, 602-611. 

Zhu, J.H., P. Stephenson, D.A. Laurie, W. Li, D. Tang, M.T. Jackson & M.D. Gale, 1999. Towards rice genome scanning by map-based AFLP fingerprinting. Molecular and General Genetics 261, 184-295. 

 

 

Are you plant blind?

In our 1986 book Plant Genetic Resources: An Introduction to their Conservation and Use, my former colleague and friend of almost 50 years, Professor Brian Ford-Lloyd and I wrote (on page 1):

To most people the word ‘conservation’ conjures up visions of lovable cuddly animals like giant pandas on the verge of extinction. Or it refers to the prevention of the mass slaughter of endangered whale species, under threat because of human’s greed and short-sightedness. Comparatively few  however, are moved to action or financial contribution by the idea of economically important plant genes disappearing from the face of the earth. . . . But plant genetic resources make little impression on the heart even though their disappearance could herald famine on a greater scale than ever seen before, leading to ultimate world-wide disaster.

Hyperbole? Perhaps. Through our 1986 lens that did not seem far-fetched. And while it’s fair to say that the situation today is better in some respects than Brian and I predicted, there are new threats and challenges, such as global warming.

The world needs genetic diversity to breed varieties of crops that will keep agricultural systems sustainable, allow production of crops in drought-prone regions, where temperatures are increasing, and where new races of diseases threaten even the very existence of agriculture for some crops.

That genetic diversity comes from the hundreds of thousands of crop varieties that farmers have nurtured for generations since the birth of agriculture millennia ago, or in closely related wild species. After all, all crops were once wild species before domestication.

These are the genetic resources that must be safely guarded for future generations.

The work of the International Board for Plant Genetic Resources (IBPGR), then the International Plant Genetic Resources Institute (IPGRI), was pivotal in coordinating and supporting genetic resources programs worldwide, in the 1970s, 80s and 90s.

Then a new and very important player came along. Over the past decade and half the Crop Trust, has provided long-term support to some of the world’s most important genebanks.

International mechanisms have been put in place to support collection, conservation, study, and use of plant genetic resources. Yet, much remains to be done. And ‘Joe Public’ is probably still as unaware of the importance of the crop varieties and their wild relatives (and perhaps plants in general) as we feared more than three decades ago.


Wildlife programs on TV are mostly about animals, apart from the weekly gardening programs, and some such as David Attenborough’s The Private Life of Plants (broadcast in 1995). Animal programs attract attention for precisely the reasons that Brian and I highlighted in 1986. A couple of nights ago for instance I watched a fascinating, hour-long program on the BBC about hippos in the Okavango Delta of Botswana. Wonderful footage revealing never-before-seen hippo behaviour and ecology.

When it comes to genetic resources, animals don’t do so badly either, at least here in the UK. We get an almost weekly item about the importance of rare breeds of livestock and their imperiled status during the BBC’s flagship Countryfile program on Sunday evenings presented by farmer Adam Henson, whose father Joe helped set up the Rare Breeds Survival Trust (RBST) in 1973. The RBST has been pivotal in rescuing many breeds from the brink of extinction. Just last night (28 July) Adam proudly showed an Albion calf born the day before on his farm in the Cotswolds. The Albion breed is one of the rarest in the UK.

Photo credit: the RBST

But that says very little about all the endangered livestock breeds around the world that are fortunately the focus of the work of the International Livestock Research Institute (ILRI).

Ankole cattle from southwestern Uganda (photo credit: ILRI/Stevie Mann).

However . . .

When was the last time—if ever—you watched a TV documentary about the rare (so-called ‘heritage’) varieties of the food plants on which we depend, or their closest wild species relatives, such as the barleys of Ethiopia or the potatoes of the South American Andes, for instance. And would you really care if you hadn’t?

Are you even aware that the barleys that we use for brewing originally came from Ethiopia and the Middle East? Or that the Spanish brought the potato back to Europe in the 16th century from Peru? What about your daily cups of tea or coffee?

These are just some of the myriad of fascinating histories of our food crops. Today many of these staples are often more important in agriculture in parts of the world far distant from the regions where they originated and were first domesticated.

In the UK, enthusiasts will be aware of heritage vegetable varieties, and the many varieties of fruits like apples that have disappeared from commercial orchards, but are still grown at places like Berrington Hall in Herefordshire.

Take a look at this article by freelance communicator Jeremy Cherfas about the origins of the food we eat. Jeremy has written a lot about genetic resources (and many other aspects of sustainable agriculture). As he says, you may discover a few surprises.

In centers of domestication, the diversity of the crops grown by farmers is impressive indeed. It’s wonderful. It’s BEAUTIFUL! The domestication of crops and their use by farmers worldwide is the story of civilization.

Here are just a few examples from beans, maize, cocoa, cucurbits, wheat, and lentil.

And take a look at the video below.

Who could fail to be impressed by such a range of shapes and colors of these varieties? And these varieties (and wild species) contain all the genes we need to keep crops productive.

Plant genetic resources: food for the stomach, food for the soul.


My own work since 1971 concerned the conservation and use of potatoes and rice (and some legume species as side projects).

In Peru, I came to learn just how important potatoes are for communities that live at altitude in the Andes. Could the Inca empire have grown and dominated the region had there been no potatoes (and maize)?

Machu Picchu

And there are so many wild species of potatoes that can be found from the southern USA to the south of Chile and east into the plains of Brazil. The International Potato Center (CIP) in Lima (where I worked for over eight years) has the world’s largest genebank of potato varieties. Important wild species collections are maintained there, as well as in Scotland at the Commonwealth Potato Collection (maintained by the James Hutton Institute), and the USA, at the NRSP-6 Potato Genebank in Sturgeon Bay, WI.

Rice is the food of Asia. There are thousands upon thousands of varieties that grow in standing water, or on sloping uplands, or in areas that flood and so have evolved to elongate rapidly to keep pace with rising flood waters.

Here is a selection of images of rice diversity in Laos, one of the countries that we explored during the 1990s.

Would it have been possible to build the temple complex at Angkor Wat in Cambodia in the 12th century without rice? It has been estimated that upwards of one million workers were employed in its construction. That workforce needed a constant supply of staple rice, the only crop that could be grown productively in this monsoon environment.

These potato and rice examples are the tip of the genetic resources and civilization history iceberg. Think about the origins of agriculture in Turkey and the Mideast, 10,000 years ago. Remains of wheat, barley and pulses like lentil and chickpea have been found at the earliest cities in that region. And these histories are repeated all around the world.


In 1983 and 1984, BBC2 aired two series of a program called Geoffrey Smith’s World of Flowers, in which Smith (a professional gardener and broadcaster) waxed lyrical on the history of many of his favorite garden plants, and their development in cultivation: tulips from Turkey, dahlias from Mexico, lilies from North America, and many, many more.

In these programs, he talked about where and how the plants grow in the wild, when they had been collected, and by whom, and how through decades (centuries in some cases) of hybridization and selection, there are so many varieties in our gardens today. The programs attracted an audience of over 5 million apparently. And two books were also published.

I had an idea. If programs like these could be so popular, how about a series on the food plants that we eat, where they originated, how they were domesticated, and how modern varieties have been bred using these old varieties and wild species. I envisaged these programs encompassing archaeology and crop science, the rise of civilizations, completing the stories of why and which crops we depend on.

I wrote a synopsis for the programs and sent it to the producer at the BBC of the Geoffrey Smith programs, Brian Davies. I didn’t hear back for several weeks, but out of the blue, he wrote back and asking to come up to Birmingham for a further discussion. I pitched the idea to him. I had lots of photos of crop diversity and wild species, stories about the pioneers of plant genetic resources, like Vavilov, Jack Harlan, Erna Bennett, and Jack Hawkes, to name just a few. I explained how these plant stories were also stories about the development and growth of civilizations, and how this had depended on plant domestication. Stories could be told from some of the most important archaeological sites around the world.

Well, despite my enthusiasm, and the producer warming to the idea, he eventually wrote back that the BBC could not embark on such a series due to financial limitations. And that’s all I heard. Nevertheless, I still think that a series along these lines would make fascinating television. Now who would present the series (apart from myself, that is!)?

Maybe its time has come around again. From time-to-time, interesting stories appear in the media about crops and their origins, as this recent one about cocoa and vanilla in the Smithsonian Magazine illustrates.

But we need to do more to spread the plant genetic resources ‘gospel’. The stories are not only interesting, but essential for our agricultural survival.


 

A botanical field trip to the south of Peru . . . 45 years ago

In 1976, a paper appeared in the scientific journal Flora, authored by University of St Andrews botanist Peter Gibbs¹ (now retired), on the breeding system of a tuber crop, oca (Oxalis tuberosa), that is grown by farmers throughout the Andes of Peru and Bolivia.

Like a number of Oxalis species, oca has a particular floral morphology known as heterostyly that promotes outcrossing between different plants. In his 1877 The Different Forms of Flowers on Plants of the Same Species, Charles Darwin had illustrated (in Fig. 11) the particular situation of tristyly in ‘Oxalis speciosa‘, the same floral morphology that is found in oca. In this illustration taken from Darwin’s publication, the ‘legitimate’ pollinations are shown; stigmas can only receive pollen from stamens at the same level in another flower.

Anyway, to cut a long story short, Peter had visited Peru in early 1974 (hard to believe that it’s 45 years ago), made collections of oca from a number of localities, particularly one village, Cuyo Cuyo, in the Department of Puno in the south of Peru (just north of Lake Titicaca), and then studied the breeding system of the oca varieties that he’d collected. His 1976 paper in Flora emanated from that field trip.


But there’s more to that story (and publication) than meets the eye. It was also tied up with the research I was carrying out on potatoes in the Peruvian Andes at that time. Peter and I made that field trip together, spending at least three weeks on the road, before flying back to Lima from Cuzco.

I don’t recall precisely when I first met Peter. We were obviously in touch when planning the trip south, but I simply can’t remember whether, during 1973, Peter had passed through Lima where I was working at the International Potato Center (CIP) in La Molina since January that year, or he had contacted CIP’s Director General Richard Sawyer asking if the center could provide logistical support and the DG had passed that request on to me. Whatever the course of events, Peter and I came to an agreement to make a field trip together to the south of Peru.

This is the route of more than 2000 km that we took.

While working as an Associate Taxonomist at CIP I was also registered for a PhD in potato biosystematics (under potato expert Professor Jack Hawkes at The University of Birmingham) which I was expected to complete by 1975. My work, studying the breeding relationships of potato varieties with different chromosome numbers was similar, in some respects, to that Peter envisaged with oca.

I’d been looking for suitable field locations where it might be possible to study the dynamics of potato cultivation in an ‘unspoiled’ area where mostly traditional potato varieties were cultivated rather than varieties bred and released on the market in recent years. At the back end of 1973 I made a short visit to Puno on the shore of Lake Titicaca to explore several possible field sites. Then, Peter proposed we visit the remote village of Cuyo Cuyo, around 250 km north of Puno. He’d come across a paper (either one by AW Hill in 1939 or another by WH Hodge in 1951 – both are cited by Peter in his Flora paper) that described widespread oca cultivation at Cuyo Cuyo on a series of ancient terraces, but also of potato varieties. I wasn’t sure if this was the location I was looking for, but agreed that we could explore Cuyo Cuyo first before heading north towards Cuzco in search of other likely sites.


Our journey south to Puno took at least three days if memory serves me correctly. Our trusty chariot was a short wheelbase Land Rover, with a canvas hood.

Not the most secure vehicle if you have to park up overnight in an unprotected lot. Nor the most comfortable; very sturdy suspension. But an excellent vehicle otherwise for ‘driving’ out of tricky situations.

We headed south on the Panamericana Sur, stopping at Ica or Nazca on the first night south of Lima, then on to Arequipa on the second day.

The Panamericana hugs the coast through the southern desert, crossing river valleys that flow down from the Andes to meet the Pacific Ocean. Along these, and in the area of Camana (where the road heads inland to Arequipa) quite a lot of rice is grown.

From Arequipa it must have taken another day to travel to Puno across the altiplano.

We then had another night to recoup in Puno, enjoying a comfortable bed, some good food, and perhaps one too many algarrobina cocktails (made from pisco) that Peter had taken a shine to.

Along the shore of Lake Titicaca near Puno


It took a day to travel to Cuyo Cuyo, across the altiplano (>4000 masl), fording rivers, and then, as we approached the village from the south, dropping into a steep-sided valley, the Sandia Gorge.

We hit a cloud layer, obscuring views of the valley, but also coming across a landslide that had to be cleared before we could make progress.

Once past that barrier, the cloud cleared and we began to see something of the majesty of the Cuyo Cuyo valley, with the steep valley sides covered in ancient terraces that, as we discovered over the next few days, were still be farmed communally as they had been for generations apparently. On the descent into Cuyo Cuyo, the banks alongside the road were also covered in masses of a beautiful begonia (Begonia clarkei Hook.) with large white flowers about 3-4 inches in diameter.


Where to stay? There was no hotel or pensión in Cuyo Cuyo. We did however have some camping gear with us such as camp beds, sleeping bags and the like. Plus all our other equipment for collecting (and drying) herbarium samples, and flowers and flower buds for pollen and chromosome studies.

After some enquiries we met Sr Justo Salas Rubín (who was, if I remember correctly, the local postmaster – seen with Peter below) who gave us space in one of the rooms of his home (the ‘post office’?) to set up ‘camp’. We also soon became quite a curiosity for the local children (and some animal friends as well).

I was not disappointed that we chose Cuyo Cuyo first. It was an extraordinary location where we could interact with potato and oca farmers who grew a wide range of varieties, and who were open to collaborate with us. Since that visit in 1974 several other botanists (and anthropologists) have made field studies at Cuyo Cuyo on the agricultural terraces that I described here.

While Peter set about collecting samples in the many oca fields (mainly beside the river on the valley floor), I set off up the terraces to study a couple of fields for their varietal composition, the ploidy (or chromosome number) of these varieties, and the factors that led farmers to accept or reject varieties. I was interested to see how triploid varieties (sterile forms with 36 chromosomes that can only be formed following hybridization between varieties with 48 and 24 chromosomes) could enter farmer systems, and at what frequency.

I also looked at the methods used to cultivate potatoes, and the tools used.²

On the left is a foot plough, about 4 feet in length, known in Cuyo Cuyo as a ‘huire’ (most often ‘chaqui taccla’ in other parts of Peru). Its component parts are: A. ‘calzada’ that rests on the shoulder; B. ‘huiso’ or hand grip; C. ‘lazo’ or leather binding fastening the parts together; D. ‘taquillpo’ or foot rest; and E. the ‘reja’ or blade. On the right is a hand tool used for harvesting potatoes (and presumably oca as well) called the ‘lawccana’, as well as other cultivations during the growing season. Its component parts are: A. the ‘ccalo’ or handle; B. the ‘lazo’, a leather thong holding the blade C. or ‘chonta’ on to the handle.

My paper on potatoes at Cuyo Cuyo was finally published in 1980 in the journal Euphytica. And that’s a tale in itself.³

Peter was keen to make herbarium sheets of many of the varieties he’d collected. We set up a dryer in the house where we were staying. But there was a problem. Most of the samples were pretty wet to begin with, as we experienced intermittent rain during our stay in Cuyo Cuyo. Oca stems are very fleshy, and despite our best efforts, they just didn’t dry out. Even when we got them back to Lima, and Peter prepared them for shipping back to St Andrews, many of the samples were still showing signs of life.

Indeed, after he returned to Scotland, Peter was able to take cuttings from his herbarium samples and grow plants to maturity in the glasshouse, thus continuing his studies there.


After three or four days in Cuyo Cuyo, we retraced our steps to Puno, then headed north towards Cuzco and further study sites near Chinchero.

At these, I was particularly interested in taking flower bud samples from different potato fields. In the area we chose, farmers grew a combination of bred varieties for sale in the local markets of Cuzco and, around their homes, native varieties for home consumption. In this photo, large plantings of commercial varieties stretch into the distance. Around the homes in the foreground, in walled gardens, farmers grew their native varieties.

As I was busy looking at different varieties, these two women came by, and one sat down to breastfeed her baby. They are wearing the traditional dress of that region of Cuzco.

On another day we set out to study potato (and oca) fields a little more remote, so had to hire horses to reach our destination.

Field work complete, Peter and I spent a couple of days resting up in Cuzco before flying back to Lima. We left the Land Rover there for one of my colleagues Zósimo Huamán to pick up, as he planned to undertake some fieldwork as well before driving back to Lima.

During the couple of days in Cuzco we paid a call on Prof. César Vargas, a renowned Peruvian botanist (and close friend of my PhD supervisor Jack Hawkes), who I’d met once before in January 1973 not long after I arrived in Peru. Prof Vargas’s daughter Martha studied for her MSc degree in botany at the University of St Andrews.

L to R: my wife Steph, Peter, and Martha Vargas

All in all, we had a successful field trip to the south of Peru. It’s hard to believe it all took place 45 years ago next month. But it remains, in my mind’s eye, quite a significant trip from the years I spent in Peru.


¹ Peter graduated in botany from the University of Liverpool, and completed his PhD in 1964 there under the supervision of Professor Vernon Heywood, who moved to the University of Reading to become head of that university’s Department of Botany a couple of years later. Peter and I had a lot to talk about, because in 1969-70, when I was an undergraduate at the University of Southampton, Vernon Heywood gave a series of 20 lectures on flowering plant taxonomy over 10 weeks to Southampton botanists, because Leslie Watson, Southampton’s taxonomy lecturer had moved to Australia. Vernon and I renewed our acquaintance some years later, in 1991, when he and I attended a genetic resources meeting at the Food and Agriculture Organization of the United Nations (FAO) in Rome just before I moved to the Philippines to join the International Rice Research Institute (IRRI).

² One interesting piece of information that didn’t make it into my thesis but which I remember clearly was the incidence of geophagy among some residents of Cuyo Cuyo. I was taken to a location where farmers would excavate small quantities of a hard clay, that would be ground to a powder and mixed with water to form a slurry or soft paste. They would then dip recently harvested boiled potatoes in the clay as this, apparently, would decrease the slightly ‘spicy’ flavor of some of the varieties. I’m not sure how widespread this behavior was, but it’s something that has stuck in my mind all these years. I think I once had photos but they are long lost, more’s the pity.

³ I completed my PhD in December 1975, and shortly afterwards moved to Costa Rica to continue working for CIP, in potato breeding and agronomy. I started to prepare three manuscripts from my thesis for publication in Euphytica. The first, on varietal diversity, was submitted in February 1977, and published later the same year. The second, on breeding relationships, was published in 1978, having been submitted in July 1977. The third, on the ethnobotany of potato cultivation in Cuyo Cuyo finally appeared in print in 1980, having been submitted to Euphytica in February 1979.

But Euphytica had not been the first choice for this third paper. I actually produced a manuscript for the journal Economic Botany, and it included more details of the cropping systems and varietal choices made by farmers. My paper was received by the journal and acknowledged, but then I heard nothing more, for months and months. Eventually I wrote to the editor asking about the status of my manuscript. And I received a very strange reply.

It seemed that the editor-in-chief had retired, and his replacement had found, on file, manuscripts that had been submitted up to 20 years earlier, but had never been published! I was asked how I wanted to proceed with my manuscript as there was no guarantee it would appear in print any time soon. But about the same time, I received a nice letter from the then editor of Euphytica, Dr AC Zeven, complimenting me on my PhD thesis (which he had read in the library at Wageningen University in the Netherlands) and encouraging me to publish my work on the ethnobotany of potatoes – if I hadn’t already done so. I withdrew my manuscript from Economic Botany, and after some reformatting to fit the Euphytica style, sent it to Dr Zeven. He requested some deletions of the more descriptive sections on ethnobotany, and published my paper in 1980.


One last thing: I also remember was the novel that Peter was reading throughout the trip. Watership Down by Richard Adams, first published in 1972, that went on to become a literary sensation. I did read it myself at some point, but whether I borrowed Peter’s copy immediately after the trip, or some time later, I don’t recall. I know I didn’t think it would become the phenomenon that it did. What do I know?


9 February 2023
Today I received the news that Peter passed away, at home in St Andrews, on 6 February. That would be almost 49 years to the day since we set out from Lima on our expedition to the south of Peru. Rest in peace, Peter.


 

Discovering Vavilov, and building a career in plant genetic resources: (3) Becoming a genebanker in the 1990s, and beyond

My decision to leave a tenured position at the University of Birmingham in June 1991 was not made lightly. I was about to be promoted to Senior Lecturer, and I’d found my ‘home’ in the Plant Genetics Research Group following the reorganization of the School of Biological Sciences a couple of years earlier.

But I wasn’t particularly happy. Towards the end of the 1980s, Margaret Thatcher’s Conservative Government had become hostile to the university sector, demanding significant changes in the way they operated before acceding to any improvements in pay and conditions. Some of the changes then forced on the university system still bedevil it to this day.

I felt as though I was treading water, trying to keep my head above the surface. I had a significant teaching load, research was ticking along, PhD and MSc students were moving through the system, but still the university demanded more. So when an announcement of a new position as Head of the Genetic Resources Center (GRC) at the International Rice Research Institute (IRRI) in the Philippines landed on my desk in September 1990, it certainly caught my interest. I discussed such a potential momentous change with Steph, and with a couple of colleagues at the university.

Nothing venture, nothing gained, I formally submitted an application to IRRI and, as they say, the rest is history. However, I never expected to spend the next 19 years in the Philippines.


Since 1971, I’d worked almost full time in various aspects of conservation and use of plant genetic resources. I’d collected potato germplasm in Peru and the Canary Islands while at Birmingham, learned the basics of potato agronomy and production, worked alongside farmers, helped train the next generation of genetic conservation specialists, and was familiar with the network of international agricultural research centers supported through the Consultative Group on International Agricultural Research or CGIAR.

What I had never done was manage a genebank or headed a department with tens of staff at all professional levels. Because the position in at IRRI involved both of these. The head would be expected to provide strategic leadership for GRC and its three component units: the International Rice Germplasm Center (IRGC), the genebank; the International Network for the Genetic Evaluation of Rice (INGER); and the Seed Health Unit (SHU). However, only the genebank would be under the day-to-day management of the GRC head. Both INGER and the SHU would be managed by project leaders, while being amalgamated into a single organizational unit, the Genetic Resources Center.

I was unable to join IRRI before 1 July 1991 due to teaching and examination commitments at the university that I was obliged to fulfill. Nevertheless, in April I represented IRRI at an important genetic resources meeting at FAO in Rome, where I first met the incoming Director General of the International Board for Plant Genetic Resources (soon to become the International Plant Genetic Resources Institute or IPGRI), Dr Geoff Hawtin, with whom I’ve retained a friendship ever since.

On arrival at IRRI, I discovered that the SHU had been removed from GRC, a wise decision in my opinion, but not driven I eventually discerned by real ‘conflict of interest’ concerns, rather internal politics. However, given that the SHU was (and is) responsible, in coordination with the Philippines plant health authorities, to monitor all imports and exports of rice seeds at IRRI, it seemed prudential to me not to be seen as both ‘gamekeeper and poacher’, to coin a phrase. After all the daily business of the IRGC and INGER was movement of healthy seeds across borders.


Klaus Lampe

My focus was on the genebank, its management and role within an institute that itself was undergoing some significant changes, 30 years after it had been founded, under its fifth Director General, Dr Klaus Lampe, who had hired me. He made it clear that the head of GRC would not only be expected to bring IRGC and INGER effectively into a single organizational unit, but also complete a ‘root and branch’ overhaul of the genebank’s operations and procedures, long overdue.

Since INGER had its own leader, an experienced rice breeder Dr DV Seshu, somewhat older than myself, I could leave the running of that network in his hands, and only concern myself with INGER within the context of the new GRC structure and personnel policies. Life was not easy. My INGER colleagues dragged their feet, and had to be ‘encouraged’ to accept the new GRC reality that reduced the freewheeling autonomy they had become accustomed to over the previous 20 years or so, on a budget of about USD1 million a year provided by the United Nations Development Program or UNDP.

When interviewing for the GRC position I had also queried why no germplasm research component had been considered as part of the job description. I made it clear that if I was considered for the position, I would expect to develop a research program on rice genetic resources. That indeed became the situation.


Once in post at IRRI, I asked lots of questions. For at least six months until the end of 1991, I made no decisions about changes in direction for the genebank until I better understood how it operated and what constraints it faced. I also had to size up the caliber of staff, and develop a plan for further staff recruitment. I did persuade IRRI management to increase resource allocation to the genebank, and we were then able to hire technical staff to support many time critical areas.

But one easy decision I did make early on was to change the name of the genebank.  As I’ve already mentioned, its name was the ‘International Rice Germplasm Center’, but it didn’t seem logical to place one center within another, IRGC in GRC. So we changed its name to the ‘International Rice Genebank’, while retaining the acronym IRGC (which was used for all accessions in the germplasm collection) to refer to International Rice Genebank Collection.

In various blog posts over the past year or so, I have written extensively about the genebank at IRRI, so I shall not repeat those details here, but provide a summary only.

I realized very quickly that each staff member had to have specific responsibilities and accountability. We needed a team of mutually-supportive professionals. In a recent email from one of my staff, he mentioned that the genebank today was reaping the harvest of the ‘seeds I’d sown’ 25 years ago. But, as I replied, one has to have good seeds to begin with. And the GRC staff were (and are) in my opinion quite exceptional.

In terms of seed management, we beefed up the procedures to regenerate and dry seeds, developed protocols for routine seed viability testing, and eliminated duplicate samples of genebank accessions that were stored in different locations, establishing an Active Collection (at +4ºC, or thereabouts) and a Base Collection (held at -18ºC). Pola de Guzman was made Genebank Manager, and Ato Reaño took responsibility for all field operations. Our aim was not only to improve the quality of seed being conserved in the genebank, but also to eliminate (in the shortest time possible) the large backlog of samples to be processed and added to the collection.

Dr Kameswara Rao (from IRRI’s sister center ICRISAT, based in Hyderabad, India) joined GRC to work on the relationship between seed quality and seed growing environment. He had received his PhD from the University of Reading, and this research had started as a collaboration with Professor Richard Ellis there. Rao’s work led to some significant changes to our seed production protocols.

Since I retired, I have been impressed to see how research on seed physiology and conservation, led by Dr Fiona Hay (now at Aarhus University in Denmark) has moved on yet again. Take a look at this story I posted in 2015.

Screen house space for the valuable wild species collection was doubled, and Soccie Almazan appointed as  wild species curator.

One of the most critical issues I had to address was data management, which was in quite a chaotic state, with data on the Asian rice samples (known as Oryza sativa), the African rices (O. glaberrima), and the remaining 20+ wild species managed in separate databases that could not ‘talk’ to each another. We needed a unified data system, handling all aspects of genebank management, germplasm regeneration, characterization and evaluation, and germplasm exchange. We spent about three years building that system, the International Rice Genebank Collection Information System (IRGCIS). It was complicated because data had been coded differently for the two cultivated and wild species, that I have written about here. That’s a genebank lesson that needs to be better appreciated in the genebank community. My colleagues Adel Alcantara, Vanji Guevarra, and Myrna Oliva did a splendid job, which was methodical and thorough.

In 1995 we released the first edition of a genebank operations manual for the International Rice Genebank, something that other genebanks have only recently got round to.

Our germplasm research focused on four areas:

  • seed conservation (with Richard Ellis at the University of Reading, among others);
  • the use of molecular markers to better manage and use the rice collection (with colleagues at the University of Birmingham and the John Innes Centre in Norwich);
  • biosystematics of rice, concentrating on the closest wild relative species (led by Dr Bao-Rong Lu and supported by Yvette Naredo and the late Amy Juliano);
  • on farm conservation – a project led by French geneticist Dr Jean-Louis Pham and social anthropologists Dr Mauricio Bellon and Steve Morin.

At the beginning of the 1990s there were no genome data to support the molecular characterization of rice. Our work with molecular markers was among use these to study a germplasm collection. The research we published on association analysis is probably the first paper that showed this relationship between markers and morphological characteristics or traits.

In 1994, I developed a 5-year project proposal for almost USD3.3 million that we submitted for support to the Swiss Development Cooperation. The three project components included:

  • germplasm exploration (165 collecting missions in 22 countries), with about half of the germplasm collected in Laos; most of the collected germplasm was duplicated at that time in the International Rice Genebank;
  • training: 48 courses or on-the-job opportunities between 1995 and 1999 in 14 countries or at IRRI in Los Baños, for more than 670 national program staff;
  • on farm conservation to:
    • to increase knowledge on farmers’ management of rice diversity, the factors that
      influence it, and its genetic implications;
    • to identify strategies to involve farmers’ managed systems in the overall conservation of
      rice genetic resources.

I was ably assisted in the day-to-day management of the project by my colleague Eves Loresto, a long-time employee at IRRI who sadly passed away a few years back.

When I joined IRRI in 1991 there were just under 79,000 rice samples in the genebank. Through the Swiss-funded project we increased the collection by more than 30%. Since I left the genebank in 2001 that number has increased to over 136,000 making it the largest collection of rice germplasm in the world.

We conducted training courses in many countries in Asia and Africa. The on-farm research was based in the Philippines, Vietnam, and eastern India. It was one of the first projects to bring together a population geneticist and a social anthropologist working side-by-side to understand how, why, and when farmers grew different rice varieties, and what incentives (if any) would induce them to continue to grow them.

The final report of this 5-year project can be read here. We released the report in 2000 on an interactive CD-ROM, including almost 1000 images taken at many of the project sites, training courses, or during germplasm exploration. However, the links in the report are not active on this blog.

During my 10 year tenure of GRC, I authored/coauthored 33 research papers on various aspects of rice genetic resources, 1 co-edited book, 14 book chapters, and 23 papers in the so-called ‘grey’ literature, as well as making 33 conference presentations. Check out all the details in this longer list, and there are links to PDF files for many of the publications.


In 1993 I was elected chair of the Inter-Center Working Group on Genetic Resources, and worked closely with Geoff Hawtin at IPGRI, and his deputy Masa Iwanaga (an old colleague from CIP), to develop the CGIAR’s System-wide Genetic Resources Program or SGRP. Under the auspices of the SGRP I organized a workshop in 1999 on the application of comparative genetics to genebank collections.

Professor John Barton

With the late John Barton, Professor of Law at Stanford University, we developed IRRI’s first policy on intellectual property rights focusing on the management, exchange and use of rice genetic resources. This was later expanded into a policy document covering all aspects of IRRI’s research.

The 1990s were a busy decade, germplasm-wise, at IRRI and in the wider genetic resources community. The Convention on Biological Diversity had come into force in 1993, and many countries were enacting their own legislation (such as Executive Order 247 in the Philippines in 1995) governing access to and use sovereign genetic resources. It’s remarkable therefore that we were able to accomplish so much collecting between 1995 and 2000, and that national programs had trust in the IRG to safely conserve duplicate samples from national collections.

Ron Cantrell

All good things come to an end, and in January 2001 I was asked by then Director General Ron Cantrell to leave GRC and become the institute’s Director for Program Planning and Coordination (that became Communications two years later as I took on line management responsibility for Communication and Publications Services, IT, and the library). On 30 April, I said ‘goodbye’ to my GRC colleagues to move to my new office across the IRRI campus, although I kept a watching brief over GRC for the next year until my successor, Dr Ruaraidh Sackville Hamilton, arrived in Los Baños.

Listen to Ruaraidh and his staff talking about the genebank.


So, after a decade with GRC I moved into IRRI’s senior management team and set about bringing a modicum of rationale to the institute’s resource mobilization initiatives, and management of its overall research project portfolio. I described here how it all started. The staff I was able to recruit were outstanding. Running DPPC was a bit like running a genebank: there were many individual processes and procedures to manage the various research projects, report back to donors, submit grant proposals and the like. Research projects were like ‘genebank accessions’ – all tied together by an efficient data management system that we built in an initiative led by Eric Clutario (seen standing on the left below next to me).

From my DPPC vantage point, it was interesting to watch Ruaraidh take GRC to the next level, adding a new cold storage room, and using bar-coding to label all seed packets, a great addition to the data management effort. With Ken McNally’s genomics research, IRRI has been at the forefront of studies to explore the diversity of genetic diversity in germplasm collections.

Last October, the International Rice Genebank was the first to receive in-perpetuity funding from the Crop Trust. I’d like to think that the significant changes we made in the 1990s to the genebank and management of rice germplasm kept IRRI ahead of the curve, and contributed to its selection for this funding.

I completed a few publications during this period, and finally retired from IRRI at the end of April 2010. Since retirement I have co-edited a second book on climate change and genetic resources, led a review of the CGIAR’s genebank program, and was honored by HM The Queen as an Officer of the British Empire (OBE) in 2012 for my work at IRRI.

So, as 2018 draws to a close, I can look back on almost 50 years involvement in the conservation and use of plant genetic resources for food and agriculture. What an interesting—and fulfilling—journey it has been.


 

 

 

 

Discovering Vavilov, and building a career in plant genetic resources: (1) Starting out in South America in the 1970s

Nikolai Vavilov

Russian geneticist and plant breeder Nikolai Vavilov (1887-1943) is a hero of mine. He died, a Soviet prisoner, five years before I was born.

Until I began my graduate studies in the Department of Botany at the University of Birmingham in the conservation and use of plant genetic resources (i.e., crops and their wild relatives) almost 50 years ago in September 1970, his name was unknown to me. Nevertheless, Vavilov’s prodigious publications influenced the career I subsequently forged for myself in genetic conservation.

At the same time I was equally influenced by my mentor and PhD supervisor Professor Jack Hawkes, at Birmingham, who met .

Vavilov undoubtedly laid the foundations for the discipline of genetic resources —the collection, conservation, evaluation, and use of plant genetic resources for food and agriculture (PGRFA). It’s not for nothing that he is widely regarded as the Father of Plant Genetic Resources.

Almost 76 years on from his death, we now understand much more about the genetic diversity of crops than we ever dreamed possible, even as recently as the turn of the Millennium, thanks to developments in molecular biology and genomics. The sequencing of crop genomes (which seems to get cheaper and easier by the day) opens up significant opportunities for not only understanding how diversity is distributed among crops and species, but how it functions and can be used to breed new crop varieties that will feed a growing world population struggling under the threat of environmental challenges such as climate change.

These tools were not available to Vavilov. He used his considerable intellect and powers of observation to understand the diversity of many crop species (and their wild relatives) that he and his associates collected around the world. Which student of genetic resources can fail to be impressed by Vavilov’s theories on the origins of crops and how they varied among regions.

In my own small way, I followed in Vavilov’s footsteps for the next 40 years. I can’t deny that I was fortunate. I was in the right place at the right time. I had some of the best connections. I met some of the leading lights such as Sir Otto Frankel, Erna Bennett, and Jack Harlan, to name just three. I became involved in genetic conservation just as the world was beginning to take notice.


Knowing of my ambition to work overseas (particularly in South America), Jack Hawkes had me in mind in early 1971 when asked by Dr Richard Sawyer, the first Director General of the International Potato Center (CIP, based in Lima, Peru) to propose someone to join the newly-founded center to curate the center’s collection of Andean potato varieties. This would be just a one-year appointment while a Peruvian scientist received MSc training at Birmingham. Once I completed the MSc training in the autumn of 1971, I had some of the expertise and skills needed for that task, but lacked practical experience. I was all set to get on the plane. However, my recruitment to CIP was delayed until January 1973 and I had, in the interim, commenced a PhD project.

I embarked on a career in international agricultural research for development almost by serendipity. One year became a lifetime. The conservation and use of plant genetic resources became the focus of my work in two international agricultural research centers (CIP and IRRI) of the Consultative Group on International Agricultural Research (CGIAR), and during the 1980s at the University of Birmingham.


My first interest were grain legumes (beans, peas, etc.), and I completed my MSc dissertation studying the diversity and origin of the lentil, Lens culinaris whose origin, in 1970, was largely speculation.

Trevor Williams

Trevor Williams, the MSc Course tutor, supervised my dissertation. He left Birmingham around 1977 to become the head of the International Board for Plant Genetic Resources (IBPGR) in Rome, that in turn became the International Plant Genetic Resources Institute (IPGRI), and continues today as Bioversity International.

Joe Smartt

I guess that interest in legume species had been sparked by Joe Smartt at the University of Southampton, who taught me genetics and encouraged me in the first instance to apply for a place to study at Birmingham in 1970.

But the cold reality (after I’d completed my MSc in the autumn of 1971) was that continuing on to a PhD on lentils was never going to be funded. So, when offered the opportunity to work in South America, I turned my allegiance to potatoes and, having just turned 24, joined CIP as Associate Taxonomist.

From the outset, it was agreed that my PhD research project, studying the diversity and origin, and breeding relationships of a group of triploid (with three sets of chromosomes) potato varieties that were known scientifically as Solanum x chaucha, would be my main contribution to the center’s research program. But (and this was no hardship) I also had to take time each year to travel round Peru and collect local varieties of potatoes to add to CIP’s germplasm collection.

I explored the northern departments of Ancash and La Libertad (with my colleague Zósimo Huamán) in May 1973, and Cajamarca (on my own with a driver) a year later. Each trip lasted almost a month. I don’t recall how many new samples these trips added to CIP’s growing germplasm collection, just a couple of hundred at most.

Collecting in Ancash with Zosimo Huaman in May 1973.

Collecting potatoes from a farmer in Cajamarca, northern Peru in May 1974 (L); and getting ready to ride off to a nearby village, just north of Cuzco, in February 1974 (R).

In February 1974, I spent a couple of weeks in the south of Peru, in the department of Puno, studying the dynamics of potato cultivation on terraces in the village of Cuyo-Cuyo.

Potato terraces at Cuyo Cuyo in Puno, southern Peru.

I made just one short trip with Jack Hawkes (and another CIP colleague, Juan Landeo) to collect wild potatoes in central Peru (Depts. of Cerro de Pasco, Huánuco, and Lima). It was fascinating to watch ‘the master’ at work. After all, Jack had been collecting wild potatoes the length of the Americas since 1939, and instinctively knew where to find them. Knowing their ecological preferences, he could almost ‘smell out’ each species.

With Jack Hawkes, collecting Solanum multidissectum in the central Andes north of Lima, early 1975.

My research (and Zósimo’s) contributed to a better understanding of potato diversity in the germplasm collection, and the identification of duplicate clones. During the 1980s the size of the collection maintained as tubers was reduced, while seeds (often referred to as true potato seed, or TPS) was collected for most samples.

Potato varieties (representative ‘morphotypes’) of Solanum x chaucha that formed part of my PhD study. L-R, first row: Duraznillo, Huayro, Garhuash Shuito, Puca Shuito, Yana Shuito L-R, second row: Komar Ñahuichi, Pishpita, Surimana, Piña, Manzana, Morhuarma L-R, third row: Tarmeña, Ccusi, Yuracc Incalo L-R, fourth row: Collo, Rucunag, Hayaparara, Rodeñas

Roger Rowe

Dr Roger Rowe was my department head at CIP, and he became my ‘local’ PhD co-supervisor. A maize geneticist by training, Roger joined CIP in July 1973 as Head of the Department of Breeding & Genetics. Immediately prior to joining CIP, he led the USDA’s Inter-Regional Potato Introduction Project IR-1(now National Research Support Program-6, NRSP-6) at the Potato Introduction Station in Sturgeon Bay, Wisconsin.

Although CIP’s headquarters is at La Molina on the eastern outskirts of Lima, much of my work was carried out in Huancayo, a six hour drive winding up through the Andes, where CIP established its highland field station. This is where we annually grew the potato collection.

Aerial view of the potato germplasm collection at the San Lorenzo station of CIP, near Huancayo in the Mantaro Valley, central Peru, in the mid-1970s.

During the main growing season, from about mid-November to late April  (coinciding with the seasonal rainfall), I’d spend much of every week in Huancayo, making crosses and evaluating different varieties for morphological variation. This is where I learned not only all the practical aspects of conservation of a vegetatively-propagated crop, and many of the phytosanitary implications therein, but I also learned how to grow a crop of potatoes. Then back in Lima, I studied the variation in tuber proteins using a tool called polyacrylamide gel electrophoresis (that, I guess, is hardly used any more) by separating these proteins across a gel concentration gradient, as shown diagrammatically in the so-called electrophoregrams below. Compared to what we can achieve today using a range of molecular markers, this technique was really rather crude.

Jack Hawkes visited CIP two or three times while I was working in Lima, and we would walk around the germplasm collection in Huancayo, discussing different aspects of my research, the potato varieties I was studying, and the results of the various crossing experiments.

With Jack Hawkes in the germplasm collection in Huancayo in January 1975 (L); and (R), discussing aspects of my research with Carlos Ochoa in a screenhouse at CIP in La Molina (in mid-1973).

I was also fortunate (although I realized it less at the time) to have another potato expert to hand: Professor Carlos Ochoa, who joined CIP (from the National Agrarian University across the road from CIP) as Head of Taxonomy.

Well, three years passed all too quickly, and by the end of May 1975, Steph and I were back in Birmingham for a few months while I wrote up and defended my dissertation. This was all done and dusted by the end of October that year, and the PhD was conferred at a congregation held at the university in December.

With Jack Hawkes (L) and Trevor Williams (R) after the degree congregation on 12 December 1975 at the University of Birmingham.

With that, the first chapter in my genetic resources career came to a close. But there was much more in store . . .


I remained with CIP for the next five years, but not in Lima. Richard Sawyer asked me to join the center’s Regional Research Program (formerly Outreach Program), initially as a post-doctoral fellow, the first to be based outside headquarters. Thus, in April 1976 (only 27 years old) I was posted to Turrialba, Costa Rica (based at a regional research center, CATIE) to set up a research project aimed at adapting potatoes to warm, humid conditions of the tropics. A year later I was asked to lead the regional program that covered Mexico, Central America, and the Caribbean.

CATIE had its own germplasm collections, and just after I arrived there, a German-funded project, headed by Costarrican scientist Dr Jorge León, was initiated to strengthen the ongoing work on cacao, coffee, and pejibaye or peach palm, and other species. Among the young scientists assigned to that project was Jan Engels, who later moved to Bioversity International in Rome (formerly IBPGR, then IPGRI), with whom I have remained in contact all these years and published together. So although I was not directly involved in genetic conservation at this time, I still had the opportunity to observe, discuss and learn about crops that had been beyond my immediate experience.

It wasn’t long before my own work took a dramatically different turn. In July 1977, in the process of evaluating around 100 potato varieties and clones (from a collection maintained in Toluca, Mexico) for heat adaptation (no potatoes had ever been grown in Turrialba before), my potato plots were affected by an insidious disease called bacterial wilt (caused by the pathogen Ralstonia solanacearum).

(L) Potato plants showing typical symptoms of bacterial wilt. (R) An infected tuber exuding the bacterium in its vascular system.

Turrialba soon became a ‘hot spot’ for evaluating potato germplasm for resistance against bacterial disease, and this and some agronomic aspects of bacterial wilt control became the focus of much of my research over the next four years. I earlier wrote about this work in more detail.

This bacterial wilt work gave me a good grounding in how to carefully evaluate germplasm, and we went on to look at resistance to late blight disease (caused by the fungus Phytophthora infestans – the pathogen that caused the Irish Potato Famine of the 1840s, and which continues to be a scourge of potato production worldwide), and the viruses PVX, PVY, and PLRV.

One of the most satisfying aspects of my work at this time was the development and testing of rapid multiplication techniques, so important to bulk up healthy seed of this crop.

My good friend and seed production specialist colleague Jim Bryan spent a year with me in Costa Rica on this project.

Throughout this period I was, of course, working more on the production side, learning about the issues that farmers, especially small farmers, face on a daily basis. It gave me an appreciation of how the effective use of genetic resources can raise the welfare of farmers and their families through the release of higher productivity varieties, among others.

I suppose one activity that particularly helped me to hone my management skills was the setting up of PRECODEPA in 1978, a regional cooperative potato project involving six countries, from Mexico to Panama and the Dominican Republic. Funded by the Swiss, I had to coordinate and support research and production activities in a range of national agricultural research institutes. It was, I believe, the first consortium set up in the CGIAR, and became a model for other centers to follow.

I should add that PRECODEPA went from strength to strength. It continued for at least 25 years, funded throughout by the Swiss, and expanding to include other countries in Central America and the Caribbean.

However, by the end of 1980 I felt that I had personally achieved in Costa Rica and the region as much as I had hoped for and could be expected; it was time for someone else to take the reins. In any case, I was looking for a new challenge, and moved back to Lima (38 years ago today) to discuss options with CIP management.

It seemed I would be headed for pastures new, the southern cone of South America perhaps, even the Far East in the Philippines. But fate stepped in, and at the end of March 1981, Steph, daughter Hannah (almost three) and I were on our way back to the UK. To Birmingham in fact, where I had accepted a Lectureship in the Department of Plant Biology.


The subsequent decade at Birmingham opened up a whole new set of genetic resources opportunities . . .