Not so good in the field . . .

I have a rather embarrassing confession to make. Although I have degrees in botany, I’m not very good at all at identifying plants in the field. It’s just not something that has ever come easily. But I do know how to identify different species. More of that later.

Birds are a different kettle of fish altogether (says he, mixing his metaphors). I have little difficulty in identifying most of the species I come across. Maybe that’s because I’ve had an interest in bird watching since I was a small boy.

I came late to botany, however. It wasn’t until I was studying for my university entrance exams (known here in the UK as the General Certificate of Education (GCE) Advanced Level exams) that I realized that botany was the degree course for me, something I achieved at the University of Southampton (in a combined honors degree with geography) for three years from 1967.

Les Watson

During that first year, and on a field trip to the west of Ireland, we systematically studied the different families of flowering plants, under the careful guidance of fellow Leekensian¹ Les Watson who was a lecturer in plant taxonomy at Southampton.

But after graduation, my interest in all things botanical turned to the conservation and use of plant genetic resources for food and agriculture, and that became my research interest for the next 40 years, focusing on potatoes in South and Central America during the 1970s, on potatoes and grain legumes when I taught at the University of Birmingham in the 1980s, and then rice after I joined the International Rice Research Institute in the Philippines in 1991 up to my retirement in 2010.

With my Birmingham PhD supervisor, Professor Jack Hawkes, identifying potato varieties in the field genebank of the International Potato Center in Peru in 1974, and collecting wild species in the Andes northeast of Lima in March 1975.


So I’ve never been much focused on field botany, and unlike many amateur botanists and naturalists, didn’t have much enthusiasm for naming all the plants I came across. It’s a bit ironic really because in 1981 when I joined the University of Birmingham as a lecturer in plant biology, I was ‘asked’ to contribute to a second year module on flowering plant taxonomy. My contributions had less to do with identifying and studying the various plant families per se than understanding how and why variation in plant species comes about, and how variation patterns are treated in formal taxonomy.

In recent months, however, my interest has turned to plant identification. Since Steph and I moved to the northeast of England last October, I have tried to get out for a walk every day, a minimum of two miles, weather permitting. We have discovered the fantastic waggonways that crisscross Tyneside, the remnants of a busy coal mining industry that opened up in the nineteenth century and eventually met its demise in the second half of the last century. The waggonways are the routes of the railway lines that carried coal from the mines to quays (or staiths as they were known locally) on the River Tyne from where it was shipped all over the world.

Nowadays the waggonways are a haven for wildlife, and a lush abundance of plant species almost too numerous to count. They have become important (vital even) biodiversity corridors connecting different habitats across Newcastle and into the surrounding Northumberland landscape.

And, as I walking along the Cramlington Waggonway recently close to home on my way to the Silverlink Biodiversity Park (developed on a former coal waste tip), I was struck about how many of the plants I could not identify, although many were familiar. But I did want to know their names.

Now, as part of my student training in botany, I learnt how to use a flora, which is a list of all the species known to grown in a particular area or region. For the UK, the most comprehensive flora was the Flora of the British Isles, by Clapham, Tutin and Warburg, first published in 1952, and still in print today after several editions and revisions, but supplanted to some extent perhaps by Clive Stace’s New Flora of the British Isles, first published in 1991 and now in its 4th edition.

The essential thing about these floras is that they have a key to help you identify plants.

However, recognizing many of the plant families or genera as I can, I don’t have to start at the beginning of a key, but can jump to a particular family or genus to narrow down my search for the correct identity.


But my quest to identify plants has been made a whole lot easier. I follow lots of botanical related feeds on Twitter, and a couple of weeks ago, I came across one tweet referring to a plant identification site called Pl@ntNet, for which there is an app for use of mobile phones and the like. So I thought I’d give it a try.

Essentially, you upload an image to the site, and it comes back with a probability (%) of it being a particular species, but also suggesting other candidates albeit at a lower probability.

So what is Pl@ntNet? On its website, it states that Pl@ntNet is a citizen science project available as an app that helps you identify plants thanks to your pictures. This project is part of the Floris’Tic initiative, which aims to promote scientific, technical and industrial culture in plant sciences. For this, it relies on a consortium of complementary expertise in Botany, IT and Project Animation.

Pl@ntNet is a French project under the Agropolis Foundation initiated in 2009 with the objective of developing new forms of identification, sharing and accumulation of data on plants. The mobile application allows you to take photos of a plant, and to compare these photos with those of an expertly-validated and dynamically updated image base, so as to facilitate the identification of a plant. The application, with more than a million downloads, and several thousand daily users demonstrates the keen interest of the general public and the educational world for this type of technology, and a thirst for knowledge about the plants around us. This initiative illustrates the great motivation of the teams involved to produce and disseminate new forms of access to knowledge in the field of botany.

Nothing ventured, nothing gained. I decided to give it a whirl. Like all projects of this type, it depends on expert feedback, so there is a large database of photos of correctly identified species, and these are also cataloged into the floras from different parts of the world, such as Western Europe or Costa Rica, for example. In fact there are 35 subcategories to narrow down your selection. And thousands upon thousands of images of flowers, leaves, habit and habitat, fruits and the like.

So I started with a plant I did know to test how the app worked and its accuracy. I came across a patch of bloody cranesbill (Geranium sanguineum L., Geraniaceae) on the sand dunes close to home. I took a closeup of the flowers and submitted it to Pl@ntNet there and then. Within seconds, a result came back: bloody cranesbill, 95%!

On a walk last week in Northumberland, I saw a daisy-like plant that looked familiar. I’d seen something similar growing at Biddulph Grange (a National Trust property in North Staffordshire some years back). Again, within seconds, Pl@ntNet suggested Doronicum pardalianches L, Asteraceae, commonly known as giant leopard’s-bane), but with only a 56% certainty based on the flowers. So I took another photo, of the leaves this time, and Pl@ntNet again proposed the same species, with 80% certainty. So I’m pretty confident that this was indeed giant leopard’s-bane.

I must say how impressed I am with this app. As I take my smartphone with me on all my walks, Pl@ntNet will be part of my armory to identify wildlife, along with my binoculars and camera. It really is worth having a go. The app is a little memory hungry at 231 MB, but already I’m finding that my field botany is improving, and it’s so much fun having at least an indication there and then of a species identity that can be verified later on with reference to a flora, should the app not give a high identification value.

Maybe, one day, I’ll even become a competent field botanist. Although that might be stretching things a little too far.


¹ A native of Leek, a small market town in North Staffordshire where I grew up.

Leaving academia . . . heading east

28 June 1991. It was a Friday. Ten years and three months since I joined the University of Birmingham as a Lecturer in Plant Biology. And it was my last day in that post. A brief farewell party in the School of Biological Sciences at the end of the day, and that was it. I was no longer an academic.

I’d left Peru in March 1981 with such enthusiasm for the next stage of my career at Birmingham. Having spent the previous eight years and three months in South and Central America with the International Potato Center (CIP), Steph and I were looking forward to setting up home with our daughter Hannah (then almost three) back in the UK. I joined the university on 1 April. Was I the fool?

By the end of the 1980s, however, my enthusiasm for academia had waned considerably. Not that I wasn’t getting on. Far from it. I was about to be promoted to Senior Lecturer, I had an active research group (looking at the relationships between crop plants and their wild species relatives), and I enjoyed teaching.

But I began to get itchy feet, and when the opportunity arose (in September 1990) for a move to the Philippines, to join the International Rice Research Institute (IRRI) as Head of the newly-established Genetic Resources Center (with its mandate to manage the world’s largest and genetically most important genebank for rice), I didn’t hesitate. Although, I have to admit, Steph and our daughters (Philippa was born in 1982) were less keen on the idea.

In early January 1991, I was interviewed for the position at IRRI (at its research center in Los Baños, about 70 km south of Manila, the capital city of the Philippines)

This was only my second trip to Asia. I’m not sure how or why at this distance of 30 years, but I flew to Manila (MNL) with British Airways out of London-Gatwick (LGW). Having checked in, I was informed that the flight to Manila was delayed because of a fault with the assigned aircraft (a 747), and that it would be replaced by an incoming aircraft – from Miami, which wasn’t expected for at least five hours. In the end, the delay was almost 15 hours, and I arrived in Los Baños just after 1 am on the Monday morning, having set out from the UK early on Saturday, with the expectation of arriving in the Philippines with just under 24 hours to recover from my trip before the interview schedule began. In the end, I had less than four hours sleep, and was up for a 7 am breakfast meeting with Director General Klaus Lampe (right) and his three Deputy Directors General!

By the end of the month I’d agreed a three year contract. Lampe wanted me to start on 1 April. But, as I explained—and he reluctantly accepted—I still had teaching and examination commitments at the university that would take me up to the end of June. So the earliest I would be able to join the institute was 1 July.

Even so, Lampe asked me to represent IRRI at a genetic resources meeting held in April at the Food and Agriculture Organization of the United Nations (FAO) in Rome. That would be the first of many meetings at FAO and even more visits to Rome where the International Plant Genetic Resources Institute (IPGRI, now Bioversity International) also had its office.


I flew out to the Philippines on Sunday 30 June. With just one day between leaving Birmingham and heading east, I still had some final packing. And, in any case, I had to make sure that everything was ship shape and Bristol fashion for Steph and the girls, as we’d agreed I would head off to the Philippines on my own, in the first instance, get settled into my new job, and they would join me just after Christmas.

That last couple of days were quite stressful. My friend and close colleague at Birmingham, Brian Ford-Lloyd and his wife Pat dropped by on the Saturday to wish me Bon Voyage! Brian has often told me subsequently that I looked rather drained. After all it was quite a step to up sticks and move the family to the Philippines. But it was a move we have never regretted.

Steph and I also agreed that we wouldn’t rent out our home in Bromsgrove (in northeast Worcestershire, and about thirteen miles south of Birmingham), but keep it locked up and safe in case we ever needed a bolt hole, as it were, should things not work out well at IRRI, or civil unrest required us to leave the country at short notice. Politics in the Philippines has always been volatile, to say the least.

So, come Sunday morning, it was a teary goodbye for all of us when the taxi arrived to take me to Birmingham airport (BHX) for the flight to MNL via London Heathrow (LHR) and Hong Kong (HKG). In subsequent years, and for a decade until Emirates had daily flights from BHX to Dubai (DXB) and on to MNL, we always flew with KLM via Amsterdam (AMS), much more convenient than transiting through LHR. Apart from our first home leave in the summer of 1992.

British Midland (now defunct) operated the connecting flight from BHX to LHR. Placing my two or three bags on the scales, the check-in agent told me that I was way over my allowance, and if I chose to check them through to MNL, then she would have to charge me £500. On the other hand, she could send them to LHR free of charge, and I could argue with my next carrier, British Airways, for the onward flight. She checked my schedule and we agreed there was more than sufficient time between landing in LHR and the departure of my HKG flight to pick up my bags in Terminal 1 and get to Terminal 4 to check-in for the HKG/MNL flight. Wrong!

The flight left BHX on time, but on landing at LHR we taxied to the perimeter of the apron because gates were either occupied or undergoing refurbishment. And there we sat for about 30 minutes until buses came along to take us to the terminal. All the while, my connection time was being eroded by the minute. Then I had to wait for my bags to offload, and for the bus to Terminal 4. On previous transits through LHR between terminals, the bus had always crossed to the other side of the airport where Terminal 4 is located through a tunnel, a journey of a matter of minutes. Not that day, however. Our bus headed out on to the public roads, hit the M25 then exited close to Terminal 4. By the time I reached the back of a check-in queue for my flight, it was due to depart in just five minutes. Panic stations!

Leaving my bags where they were, I politely walked to the front of the queue explaining to other waiting passengers my dilemma, and they kindly let me move to the front. I was in luck. The flight had been delayed by at least 30 minutes, and the agent reckoned I could still make it. What to do about the excess baggage charges? He agreed not to charge me the full amount, and after several attempts to charge my credit card, he waived the fees, told me to put the bags on an express shute, and RUN!

The aircraft door was closed immediately after I boarded and found the only empty seat in Business Class (my reserved seat having been reallocated), and we were off. I sat there, thanking my lucky stars that I’d made the flight after all, feeling rather sweaty, and hoping it wouldn’t be too long after take-off before the cabin crew brought round the drinks trolley and I could get stuck into my first G&T.


I don’t remember too much about the trip from that point. Not because of over-imbibing, I hasten to add. It was just uneventful. On arrival in Manila, I was greeted by Director of Administration Tim Bertotti (right) and his Vietnamese wife who would be my ‘welcomers’ for the next few weeks, show me the IRRI ropes, so to speak, and be a couple I could turn to for advice. Having collected my heavy bags, and found the IRRI driver we headed south to Los Baños, where I stayed in the IRRI Guesthouse for the next month or so until the house allocated to me had been redecorated.

I can’t deny that the first night in Los Baños was quite miserable. I was overwhelmed by a feeling of regret, whether I had made the right choice to give up a tenured position at the university (a number of colleagues there thought I was crazy to leave a tenured position for the ‘insecurity’ of short-term contracts overseas). And how would the family fare during the intervening six months until they headed east? So many questions, so many uncertainties. And hard to sleep because of jet-lag.


But the next morning there was no time for self pity. I had a job to do, and just get stuck in. A driver collected me from the Guesthouse after breakfast and took me down to the research center, less than a ten minute drive across the campus of the University of the Philippines-Los Baños (UPLB). I got my ID, was assigned a car, and made an appointment to meet with Klaus Lampe.

Jack Hawkes

Then it was off to GRC in the Brady Laboratory, a building named after IRRI’s second Director General, Nyle Brady. I was already aware that there was only measured enthusiasm among the GRC staff for my appointment. Three of us had been interviewed in January, all with MSc and PhD degrees from the University of Birmingham, and Professor Jack Hawkes had supervised our PhD research. The other two candidates already managed genebanks; I had no hands-on experience of genebank management. One of the candidates, a Chinese Malay national, had carried out his thesis research at IRRI (on rice of course) with my predecessor in the IRRI gene bank, Dr TT Chang, co-supervising his research. He was a known quantity for the GRC staff and, I think, their preferred candidate. Instead they got this straight-talking Brit.

First things first. I needed to understand in detail how the genebank was currently being managed, who the key personnel were, and what were their thoughts about how things might change. I also had to manage the merger of the genebank (known in 1991 as the International Rice Germplasm Center) with another group, the International Network for the Genetic Evaluation of Rice (INGER) that was coordinated by a senior Indian scientist, Dr Seshu Durvasula who, I’m sorry to say, had no intention of going along easily with the intended merger into GRC. He resented, I believe, that he had been overlooked for the leadership of GRC.  And, in any case, who was this British scientist with no rice experience?

Anyway, back to the genebank. I think the staff were quite surprised to be asked their opinions. That was not Dr Chang’s style. Thanks to Eves, Pola (who I quickly identified as someone to lead the genebank operations on a daily basis, as genebank manager), Ato, Tom, Soccie, the data management group (Adel, Myrna, and Vangie), and Yvette and Amy (who I assigned to wild species research) for being very patient, answering all my questions, and letting me know when one of my ideas was perhaps a step too far. But one thing was clear: the operations of the genebank had to be upgraded and made more efficient. After about six months I was ready to put a plan into operation. By then, Steph and the girls were ready to fly out to the Philippines to join me.

But I have to make special mention to two very special ladies, who made my first months at GRC (and IRRI in general) so much easier: the GRC secretaries Sylvia Arellano (L below) and Tessie Santos (R). Jewels in the IRRI crown.

Sylvia was my personal secretary, and had worked for TT Chang for a number of years before he retired. Tessie supported the other internationally-recruited scientist in the genebank, British geneticist Dr Duncan Vaughan, and the rest of the genebank staff as and when needed.

Sylvia (known as Syl to everyone) was a mine of information, knew exactly who to contact should I need to follow up on any issue, and was quick to advise me how to deal with colleagues (especially the old timers) with whom I had to work across the institute. She knew just how to get things done, call in favors, and the like. I reckon that without her day-to-day support my first few months at IRRI (before I knew the ropes or understood the institutional politics) would have been far less productive. I cannot thank her too much for all the support she gave me, and we remain in contact and good friends to this day, even though it’s eleven years since I retired from IRRI, and almost 25 years since she last worked with me.

When I was on home leave in the UK during the summer of 1997, I had a phone call from the then Director General, Dr George Rothschild, who asked ‘permission’ for Sylvia to move from my office to become Executive Secretary to the Director General. It was hardly an offer I could refuse, and in any case, it was a huge promotion for Syl. She remained as Executive Secretary to the DG until her retirement a few years back, serving under three DGs (possibly four) and an Acting DG.

Tessie was quite shy, and seemed rather in awe of me. But she was a valued member of the GRC staff, and on those occasions when Syl was away from the institute, Tessie would admirably step into her shoes as my personal secretary. After a few months and once she got used to me, Tessie began to relax in my presence. Tessie was just the sort of staff member that IRRI should be proud of: hard-working, loyal, knowledgeable. And it was my good fortune that Syl had someone like Tessie to back her up.


By the end of 1991, I was very much at home at IRRI. I had a good relationship with Klaus Lampe (well, for the next couple of years or so), I had the measure of my immediate boss, Deputy Director General for International Programs, Dr Fernando ‘Nanding’ Bernardo for whom, I’m sad to relate, I didn’t have much time, and I was moving ahead with plans for the upgrade of the genebank, and reorganization of the staff. It felt like the world was my oyster, and I looked forward to the coming year with the family in Los Baños as well.

Originally thinking that I’d remain at IRRI for perhaps a couple of three-year contracts, but certainly no longer than ten years, when I retired at the end of April 2010 I’d been at IRRI for almost 19 years. Joining IRRI was the best career move I made.


 

That’s not a fair question . . .

I worked overseas for much of my career—just over 27 years—in three countries. For those who are new to my blog, I’m from the UK, and I worked in agricultural research (on potatoes and rice) in Peru, Costa Rica, and the Philippines, besides spending a decade in the UK in between teaching plant sciences at the University of Birmingham.

I have been asked, from time to time, which of the three countries Steph and I enjoyed the most. That’s not really a fair question.

Each country was a totally different experience, reflecting to a large extent that stage of our lives. We were young and newly-married in Peru in the early 1970s, our first time abroad. We raised our elder daughter Hannah in Costa Rica in the late 1970s, and were already in our early 40s when we moved to the Philippines in 1991, with two growing daughters: Hannah was 13, and Philippa just nine (born in Worcestershire in the UK). I got to learn a second language, Spanish, and became quite fluent by the time we left the Americas in 1981.

Now that I’ve been retired for over a decade, it’s a good opportunity to reflect on those years spent abroad.


laurent_amerique_du_sud_politiqueI won’t deny that I have a particular soft-spot for Peru. It was a country I’d wanted to visit since I was a small boy, when I often spent hours poring over maps of South America, imagining what those distant countries and cities would be like to visit. 

I don’t know why I was particularly drawn to the map of South America. I guess it’s the iconic shape for one thing. But, when I first moved up to high school in 1960, just before my 12th birthday, our geography lessons focused on several South American countries. I wrote to a number of embassies in London asking for information packs, and was rewarded over the following weeks with a host of brochures, maps, and the like.

Anyway, to cut a long story short (I have posted several stories elsewhere about my early days in Lima), I was offered, in February 1971, the opportunity to work in Peru, initially for just a year from September that year. Things didn’t go to plan, and it wasn’t until January 1973 that I actually landed in Lima, which became my home for the next three years.

19731013 003 Wedding

13 October 1973

Steph joined me in July, and we married the following October in the Miraflores suburb where we rented an apartment. Working at the International Potato Center (known as CIP through its Spanish acronym) we both traveled frequently to the center’s research station in Huancayo, an important town in the central Andes of Peru, in the broad and fertile Mantaro valley, a 300 km journey that often took six hours or more. The highway, the Carretera Central, crossed the Andes at a highest point of 4,843 metres (15,890 ft) at Ticlio (around Km 120).

peru-037

In my own work collecting indigenous varieties of potatoes, I traveled to many parts of northern Peru, in the Departments of Ancash, La Libertad, and Cajamarca in 1973 and 1974.

And to the south around Lake Titicaca in the Department of Puno and near Cuzco, where I continued my research towards a PhD.

_DSC2828

Collecting potato flower buds for chromosome counts, from a farmer’s field near Cuzco, in February 1974.

Steph and I also took great pleasure in taking our Volkswagen deep into the mountains, and on long trips down the coast to Arequipa and up to Lake Titicaca. And north to the Callejón de Huaylas in Ancash, below Peru’s highest mountain Huascarán, and on to Cajamarca further north.

Peru 050(1)

Looking north to the Callejon de Huaylas, and Nevado Huascarán, Peru’s highest mountain.

I visited Cuzco and Machu Picchu just a week after I arrived in Peru, and had great pleasure taking Steph there in December the same year. In fact we delayed our honeymoon so we could book a stay at the tourist hotel at Machu Picchu (a hotel that closed many years ago).

Enjoying Machu Picchu in December 1973.

Our years in Lima were special. As I said, it was the first time Steph and I had worked abroad. CIP was a young organization, founded just over a year before I joined. There was a small group of staff, pioneers in a way, and there weren’t the layers of bureaucracy and procedures that bedevil much larger and longer-established organizations.

Peru is a stunningly beautiful country, and lived up to all my expectations. I was not disappointed. It had everything: culture, history, archaeology, landscapes. And wonderful food. You name it, Peru had it. 


But, after three years, it was time to move on, and that’s when we began a new chapter in Costa Rica from April 1976 a new chapter. Professionally, for me it was a significant move. I’d turned 27 a few months earlier. CIP’s Director General Richard Sawyer asked me to set up a research program to adapt potatoes to hot and humid conditions, so-called ‘tropical potatoes’. I was on my own; I had to rely on my own resources to a large extent. It was a steep learning curve, but so worthwhile and stood me in good stead for the rest of my career.

We remained in Costa Rica for almost five years, based at a regional agricultural research institute, CATIE, in the small town of Turrialba, some 70 km east of San José, the capital city.

The CATIE administration building

We enjoyed trips to the volcanoes nearby: Turrialba, Irazú, and Poás, to the beaches of northwest Costa Rica, just south of the frontier with Nicaragua on the Guanacaste Peninsula.  Also to the north of Panama where potatoes were the main crop in the volcanic region just south of the international border.

Hannah was born in Costa Rica in April 1978. It was a great place to raise a small child. In 1980 we took her the Monteverde National Biological Reserve in the northwest of the country (and many hours drive from Turrialba) in search of the Resplendent Quetzal.

Professionally, I learnt a lot about potatoes as a crop, about the management of potato diseases, and seed production, and contributed to setting up one of the first multi-country programs among any of the CGIAR centers. PRECODEPA as it was known set the standard for multilateral cooperation between national programs for many years to come.

I had a great team, albeit small, working with me: Jorge, Moisés, and Leda, and I wrote about them and catching up again after 40 years in a recent blog post.

Costa Rica is such a beautiful, green country, a tropical paradise, with about 25% of its land area set aside for national parks and the like. It’s one of the most biodiverse countries in the world, and I spent many hours sitting on the doorstep at home, sipping a super ice-cold beer (Cerveza Tropical was my beverage of choice) watching the multitude of birds that visited our garden. On one Christmas bird survey in the Turrialba valley, me and my birding partner spotted around 100 different species in half a day! And mammals as well: skunks, armadillos, and coatimundi among those found in the garden, not to mention some of the world’s most poisonous snakes.

After almost five years there, it was time to move on, with the expectation of a posting with CIP to the Philippines. Instead we returned to the UK in 1981, and didn’t actually make it to the Philippines until a decade later. An archipelago of more than 7600 islands; the Land of Smiles.


By the end of the 1980s I was much less enamored of academic life, and had begun to look out for new opportunities. One particularly interesting one came along in September 1990 when I applied for the position of Head of the Genetic Resources Center (GRC) at the International Rice Research Institute (IRRI) in Los Baños, about 65 km south of Manila.

Having been interviewed at the beginning of January 1991, I was offered the position a couple of weeks later, and I moved to the Philippines (without the family) on 1 July that year. Steph and the girls joined me just after Christmas.

We had a comfortable single storey residence at IRRI Staff Housing, a gated community that nestled under a dormant volcano, Mt Makiling.

Mt Makiling, from the IRRI research farm.

The IRRI research center was about ten minutes from home, and an institute bus took us to and fro over the course of the day. Staff Housing had tennis courts and a swimming pool, as well as basketball and volleyball courts, all in regular use by my colleagues and their families. Lilia was our full-time, live-in helper for almost the whole 19 years we lived in the Philippines.

In the early 1990s there was also a large group of children the same age as Hannah and Philippa, and Staff Housing was a safe environment for them to play, although I have since learned that they all got up to some daring escapades at night. Like climbing the water tower!

Steph kept herself busy with her daily swim, and a range of hobbies, including her small orchid collection, and beading (one hobby that has grown and grown!) I had a busy time at work, and less time for leisure at home. I enjoyed a barbecue whenever we could, and for many years I kept a small aviary of budgerigars. Just after I arrived in the Philippines I adopted a Siamese cat, Pusa, who finally succumbed to the ripe old age of 20 in 1998, when we acquired another Siamese, Tara. I wrote about our feline companions in this post.

But one thing Steph and I shared in common, though not to the same degree in one respect, was our love of the beach and sea. Before moving to the Philippines, I had never even snorkeled. That all changed in February 1992 when we made our first (and only) visit to Puerto Galera on the island of Mindoro. Shortly afterwards, Hannah learned to scuba dive, and I followed a year later in 1993 eventually completing more than 360 dives, all at Anilao south of Los Baños. Philippa learned a few years later when she was old enough (you had to be 13), but Steph never did take to scuba diving, being content with snorkeling the stretch of beach in front of our favorite beach resort, Arthur’s Place.

Road travel in the Philippines was always a bit of a nightmare. Inadequate roads, too many vehicles, and not enough road discipline, especially among the jeepney and tricycle drivers.

The drive to Manila could take a couple of hours, often more, and it wasn’t until just before we left the Philippines in 2010 that the main highway to Manila, the South Luzon Expressway or SLEX was finally upgraded significantly. Likewise the road connecting SLEX to the south coast where we went to the beach.

Hannah and Philippa attended the International School Manila (ISM) that was, in those days, located in the heart of Makati, the main business district of Manila. The school day started at 07:15 which meant they had to be on the road by 06:00 in those fist years. By the time Philippa graduated from high school in 1999, the buses were leaving for Manila by 04:30, and not returning home until about 16:00 or so (the school day finishing around 14:00). Phil would often go for a swim, have her dinner, and in her final two years at ISM, when she was studying for the International Baccalaureate Diploma (IB), she would have homework until about midnight. Then she snatched a few hours sleep before heading off early the next morning to school once again. All the children took blankets and pillows on the bus and caught with what sleep they could.

For both Hannah and Philippa these were stressful, but ultimately fulfilling, school years. The system was very different from the English system, the academic side very demanding and competitive, especially the IB curriculum. However, both girls did flourish and the hard work and discipline required to get through saw them in good stead later on in their university careers, with both earning a PhD degree in psychology!

Professionally, my years at IRRI were very rewarding. As Head of GRC, one of my most important responsibilities was to manage the world’s largest and genetically most-diverse collection of rice varieties and wild species (with more than 130,000 different seed samples) in the International Rice Genebank. I had a staff of about 75 researchers and assistants. I learnt a lot about people management. However, my task were made so much easier by having so many dedicated professionals to support me.

After a decade genebanking, I moved to IRRI’s senior management team as Director for Program Planning & Communications (DPPC), and set up an office to handle the institute’s interactions with its donors and fund-raising. And I remained as DPPC until my retirement in 2010.

Much as I had enjoyed my years with GRC, setting up the DPPC Office with hand-picked staff was very rewarding. I had a great team: Corinta, Zeny, Sol, Yeyet, Vhel, and Eric, and they never (well, hardly ever) let me—or IRRI—down.

Christmas 2004 at Antonio’s in Tagaytay. L-R: me, Sol, Eric, Corinta, Vhel, and Zeny.

30 April 2010, and my last day at IRRI. L-R: Eric, Corinta, Zeny, me, Vhel, and Yeyet.

We had such a lot of fun together. There was a lot of laughter in the DPPC Office. We even played badminton together once a week.

But we took our work seriously enough, and helped raise the institute’s annual budget to USD60 million.

In 2009, Steph and I had the opportunity of our first and only long road trip in the Philippines. We always took our annual leave in one block and returned to the UK each summer, so spent little time exploring the Philippines, something I now regret. Anyway, me and my DPPC team decided that we’d take a few days off (with Steph joining us) to visit the world famous (and World Heritage Site) rice terraces in the north of Luzon. That was a fantastic trip, which I wrote about here.

The rice terraces above Banaue.

Enjoying a beer together after a long day in the sun. L-R: Corinta, Zeny, our driver, Vhel, Yeyet, Eric, and me.

At the Batad rice terraces, after a long walk down the mountain. L-R: Yeyet, Steph, Eric, Vhel, and Corinta.


So there we have it: a short trip down memory lane. I have been very fortunate, blessed even, to have worked in three remarkable countries and alongside some of the best professionals I could have hoped for. I have no regrets about making that decision, in early 1973 to move abroad. It has been a fulfilling career in international agricultural research, and I’ve certainly been able to explore this wonderful world of ours, as you will have discovered if you ever perused my blog to any depth.

Morris dancing and genetic resources – an unlikely combination

I was never much good at taking exams. That is, until I studied for my Masters degree in Conservation and Utilization of Plant Genetic Resources at the University of Birmingham in 1970-1971. So how come I improved?

It was exactly 50 years ago, Tuesday 1 June 1971, when I sat the first of four written exams over consecutive days. It was also the day after the Late Spring Bank Holiday, the 31st and the last Monday of May. I spent that day—all day, in fact—Morris dancing in Lichfield, a town in south Staffordshire famous for its three-spired medieval cathedral, the ‘city of philosophers’ according one of its famous sons, Samuel, Dr Johnson.

Let me backtrack a few years.

Soon after arriving in Southampton in October 1967 to begin my undergraduate studies at the university, I joined the English & Scottish Folk Dance Society in the Students’ Union, although I’d never danced before. Then, a year later, I co-founded (with Dr Joe Smartt, a genetics lecturer in the Department of Botany) the Red Stags Morris that is still dancing today although no longer associated with the university for many years now.

The Red Stags dancing outside the Arts Faculty in March 1970 at a university Open Day. I’m the second dancer from the left, facing Joe Smartt, with Dudley Savage from the Winchester Morris Men playing the fiddle.

As I described in that earlier post about the Red Stags, we were supported from the outset by the Winchester Morris Men, and during the summer term we would join them when they danced out around the villages and pubs of Hampshire. Such a beautiful county.

Each Late Spring Bank Holiday, the Winchester Morris Men would also organize a Day of Dance, beginning in late morning and lasting well into the evening, and probably visiting half a dozen villages in the process (and their hostelries). The Red Stags joined the 1969 Day of Dance around the New Forest and ending up in Winchester by early evening. By then, we’d developed some dancing skills in the Headington and Adderbury traditions and didn’t embarrass ourselves among much more accomplished dancers. Here is a group of photos taken on that particular Day of Dance, 26 May.

Move on a year. In May 1970, the Late Spring Bank Holiday (25 May) fell on the day before my Final exams were due to start. The weather was glorious, just the sort that was never conducive for exam revision. Joe Smartt encouraged me to take that last day off from revision and join the Morris tour. Peer pressure was too great. I declined, and that’s something I have regretted ever since. Those final few hours of revision didn’t help me one iota, and my exam performance over the next week was only satisfactory to say the least, not the glory I hoped for (but didn’t really expect).

Nevertheless, I was accepted on to the MSc course at Birmingham, and moved there in September 1970, full of anticipation for this new field of plant genetic resources, and looking forward to joining a new Morris side.

There were two choices in Birmingham: Jockey Men’s Morris Club or Green Man’s Morris and Sword Club [1]. I chose the latter. One of the people who’d encouraged me to join the folk dance society at Southampton, Dr Edward Johns, had moved to Birmingham and had joined Green Man a couple of years previously.

I danced with Green Man on a weekly basis for the next two years before I moved to Peru in January 1973. When I returned to the UK in 1981, I rejoined Green Man, and became Squire (club chairman) in 1982 for a year. Unfortunately I developed arthritis in my knees and my doctor discouraged me from from dancing. So, by about 1985 or ’86, my dancing days were over.

That’s me, fourth from the right.

One of Green Man’s traditions, something they did for at least 50 years, was leading the Lichfield Bower Procession (a community event dating back to the 12th century) each Late Spring Bank Holiday. This is a procession around the city, of a couple of miles at the very least. And Green Man would dance the Bower Processional, with arms outstretched and carrying leafy boughs (typically elm in the past) the whole way, but with frequent stops to take refreshment on board.


In 1971, I was again faced with the same dilemma: should I spend the last day before exams doing some last minute revision, or head off and forget my exams fears by enjoying a day of Morris dancing, and my first Lichfield Bower?

Actually, I’d more or less made the decision some months previously. Morris dancing it was. During the MSc course I had upped my game and really learnt how to study more effectively and, more importantly, how to organize myself in preparation for the written exams. Everything went to plan, and by the end of May I felt I’d done all that I could to prepare myself for the coming week of exams. I was ready and primed, so to speak.

So, without any last minute feelings of guilt, just after breakfast I joined my fellow club members traveling to Lichfield, and spent the next twelve or thirteen hours dancing, and consuming not an inconsiderable amount of beer in the process, probably at least twelve pints over the course of the day.

I don’t think I got to bed much before midnight, but then had one of the best night’s sleep I’ve ever enjoyed. Not a care in the world, waking up the following morning fully refreshed and relaxed and ready to take on whatever the exam threw at me.

And the outcome? Well it’s plain to see.

During the 1980s, when I was teaching at the University of Birmingham, I gave my own students the same advice: Don’t spend the final day before exams trying to cram last minute information. Take the day off, do something completely different to take your mind of the coming exams. Relax, have a good time, and then have a good night’s sleep.

I know hindsight is a wonderful thing. I just wish I’d taken my own advice back in 1970.


[1] Sadly, in 2017 Green Man’s Morris and Sword Club decided that the side was no longer viable. With ageing members and not recruiting new blood, the club was no longer able to put up a side of six dancers and musician. Thus came to an end 60 or more years of dancers from a club that had provided two Squires of the Morris Ring, John Venables and Ray King. Click here to read a short account of how and why Green Man came to an end.

Getting the message out about genetic resources

For much of my career, I have taken a keen interest in science communication. Such that, a couple of years after I’d become IRRI’s Director for Program Planning & Coordination in 2001, I was asked to take on line management responsibility for several of IRRI’s administrative units, including the Communication and Publications Services (CPS) headed by my good friend Gene Hettel. My job changed to some degree, as did my title: Director for Program Planning & Communications.

I’ve always felt that scientists have a responsibility to explain their work to the general public in plain language. We’re fortunate here in the UK; there are several leading lights in this respect who have made their mark in the media and now represent, to a considerable extent, ‘the face of science’ nationally. None of them is shy about speaking out on matters of concern to society at large.

Sir David Attenborough (far left, above) is one of the world’s leading advocates for biodiversity conservation who also eloquently explains the threat and challenges of climate change. Professors Alice Roberts (second left, of The University of Birmingham) and Brian Cox (second right, The University of Manchester) have both made their mark in TV broadcasts in recent years, bringing fascinating programs covering a range of topics to the small screen. And then again, there’s Sir Paul Nurse (far right), Director of the Francis Crick Institute in London and former President of the Royal Society. I was particularly impressed with his Richard Dimbleby Lecture, The New Enlightenment, on the BBC in 2012 about his passion for science. It’s well worth a watch.


I would never claim to be in the same league as these illustrious scientists. However, over the years I have tried—in my small way—to raise awareness of the science area with which I am most familiar: plant genetic resources and their conservation. And in this blog, I have written extensively about some of my work on potatoes at the International Potato Center in Peru and on rice at the International Rice Research Institute in the Philippines, as well as training genetic resources scientists at the University of Birmingham.

So, when I was approached a few weeks ago to be interviewed and contribute to a podcast series, Plant Breeding Stories, I jumped at the chance.

The podcasts are hosted by Hannah Senior, Managing Director of PBS International, a world leading company in pollination control. So far, there have been eleven podcasts in two series, with mine broadcast for the first time just a couple of days ago. In this clip, Hannah explains the rationale for the series.

Just click on the image below to listen to our 35 minute conversation about genetic resources, genebanks, and their importance for plant breeding and food security. Oh, and a little about me and how I got into genetic resources work in the first place.

I hope you find the podcast interesting, and even a little bit enlightening. A transcript of the broadcast can be downloaded here. Thanks for listening.


I never aspired to be an academic

If, in the summer of 1970, someone had told me that one day I would be teaching botany at university, I would have told them they were delusional. But that’s what happened in April 1981 when I was appointed Lecturer in Plant Biology at the University of Birmingham. Hard to believe that’s already 40 years ago today. I stayed at Birmingham for a decade.

Birmingham is a campus university, one of the first, and also the first of the so-called ‘redbrick‘ universities. The campus has changed radically in the 30 years since I left, but many of the same landmarks are still there. The beauty of the campus can be appreciated in this promotional video.


I never, ever had any pretensions to a life in academia. As an undergraduate studying for a combined degree in Environmental Botany and Geography at University of Southampton between 1967 and 1970, I was a run-of-the-mill student. It wasn’t that I had little enthusiasm for my degree. Quite the contrary, for the most part. I enjoyed my three years at university, but I did burn the candle more at one end than the other. Also, I didn’t really know (or understand) how to study effectively, and no-one mentored me to become better. And it showed in my exam results. So while I graduated with a BSc (Hons.) degree, it was only a Lower Second; I just missed out, by a couple of percentage points, on an Upper or 2(i) degree. Perhaps with a little more effort I could have achieved that goal of a ‘better degree’. Que será . . .

However, about halfway through my final year at Southampton, I applied to Birmingham for a place on the recently-established graduate MSc course on Conservation and Utilisation of Plant Genetic Resources (CUPGR) in the Department of Botany. And the rest is history, so to speak.

I was interviewed in February 1970 and offered a place, but with no guarantee of funding. It wasn’t until late in the summer—about a couple of weeks before classes commenced—that the head of department, Professor Jack Hawkes phoned me to confirm my place (notwithstanding my ‘poor’ degree) and that he’d managed to squeeze a small grant from the university. It was just sufficient to pay my academic fees, and provide an allowance of around £5 per week (about £67 at today’s value) towards my living expenses.

So, in early September 1970 I found myself in Birmingham alongside four other MSc candidates, all older than me, from Nigeria, Pakistan, Turkey, and Venezuela, excited to learn all about plant genetic resources. I discovered my study mojo, redeeming myself academically (rather well, in fact), sufficient for Jack Hawkes to take me on as one of his PhD students, even as I was expecting to move to Peru to join the newly-established International Potato Center (CIP) in Lima. And that’s what I did for the rest of the decade, working in South and Central America before returning to Birmingham as a member of staff.


The years before Birmingham
I spent over eight years with CIP, between January 1973 and April 1976, working as an Associate Taxonomist in Lima, and helping to manage the multitude of potato varieties in the center’s field genebank, participating in collecting trips to different parts of Peru to find new varieties not already conserved in the genebank, and continuing research towards my PhD.

In the meantime, my girlfriend Stephanie (who I met at Birmingham) and I decided to get married, and she flew out to Peru in July 1973. We were married in Lima in October [1].

In May 1975, Steph and I returned to Birmingham for six months so I could complete the residency requirements for my PhD, and to write and defend my thesis. We returned to Lima by the end of December just after I received my degree.

From April 1976 and November 1980, Steph and I lived in Costa Rica in Central America on the campus of the regional agricultural research center, CATIE, in Turrialba, a small town 62 km due east of the capital, San José.

I had joined CIP’s Regional Research Department to strengthen the regional program for Mexico, Central America and the Caribbean. In 1976, the regional headquarters were in Toluca, Mexico where my head of program, Oscar Hidalgo lived. After he moved to the USA for graduate studies in 1977, CIP’s Director General, Richard Sawyer, asked me to take on the leadership of the regional program, and that’s what I did for the next four years, with an emphasis on breeding potatoes adapted to hot tropical environments, seed systems, bacterial disease resistance, and regional program development.

By November 1980 I felt it was time to move on, and requested CIP to assign me to another program. We moved back to Lima. However, with one eye on life beyond CIP, and with a growing daughter, Hannah (born in April 1978, and who would, in the next couple of years, be starting school) I also began to look for employment opportunities in the UK.


Looking for new opportunities
Towards the end of 1980 (but before we had returned to Lima) I became aware that a new lectureship was about to be advertised in the Department of Plant Biology (formerly Botany, my alma mater) at Birmingham. With the retirement of Jack Hawkes scheduled for September 1982, the lectureship would be recruited to fill an anticipated gap in teaching on the CUPGR Course.

I sent in an application and waited ‘patiently’ (patience is not one of my virtues) for a reply to come through. By the end of December (when we were already back in Lima, and in limbo so to speak) I was told I was on a long short list, but would only proceed to the final short list if I would confirm attending an interview in Birmingham (at my own expense) towards the end of January 1981. So, nothing ventured, nothing gained, and with the encouragement of the Dr Sawyer (who promised to keep a position open for me if the Birmingham application was unsuccessful) I headed to the UK.

Since completing my PhD in 1975, I had published three papers from my thesis, and a few others on potato diseases and agronomy. Not an extensive publication list by any stretch of the imagination, compared to what might be expected of faculty candidates nowadays. In reality my work at CIP hadn’t led to many scientific publication opportunities. Publications were not the be-all and end-all metric of success with the international centers back in the day. It’s what one achieved programmatically, and its impact on the lives of potato farmers that was the most important performance criterion. So, while I didn’t have a string of papers to my name, I did have lots of field and managerial experience, I’d worked with genetic resources for a number of years, and my research interests, in taxonomy and biosystematics, aligned well with the new position at Birmingham.

I interviewed successfully (eminent geneticist Professor John Jinks chairing the selection panel), and was offered the lectureship on the spot, from 1 April. The university even coughed up more than half the costs of my travel from Peru for interview. Subject to successfully passing a three-year probation period, I would then be offered tenure (tenure track as they say in North America), the holy grail of all who aspire to life in academia.


Heading to Birmingham
Saying farewell to CIP in mid-March 1981, and after more than eight happy years in South and Central America, Steph, Hannah, and I headed back to the UK via New York, where I had to close our account with Citibank on 5th Avenue.

Steph and Hannah at the top of the Empire State Building

This was just a couple of weeks or so before I was due to begin at Birmingham. We headed first to Steph’s parents in Southend-on-Sea. Since we had nowhere to live in Birmingham, we decided that I should move there on my own in the first instance, and start to look for a house that would suit us.

A few months before I joined Plant Biology, the department had recruited a lecturer in plant biochemistry, Dr John Dodds, a few years younger than me (I was 32 when I joined the university). John and I quickly became friends, and he offered me the second bedroom in his apartment, a short distance from the university.

The search for a house didn’t take long, and by mid-April we’d put in an offer on a house in Bromsgrove, some 13 miles south of the university, which was to remain our home for the next 39 years until we sold up last September. We moved in at the beginning of July, the day before I had to go away for the following two weeks as one of the staff supervising a second year undergraduate ecology field trip in Scotland. Not the most convenient of commitments under the circumstances. But that’s another story.


I start teaching
So, 40 years on, what are my reflections on the decade I spent at Birmingham?

It was midway through the 1980-81 academic year when I joined the department. I spent much of April settling in. My first office (I eventually moved office three times over the next decade) was located in the GRACE Lab (i.e., Genetic Resources and Crop Evolution Lab) where the CUPGR MSc students were based, in the grounds of Winterbourne House, on the edge of the main university campus, and about ten minutes walk from the department.

The GRACE Lab

The lab had been constructed around 1970 or so to house the Botanical Section of the British Antarctic Survey (before it moved to Cambridge). One other member of staff, Dr Pauline Mumford (a seed physiologist, on a temporary lectureship funded by the International Board for Plant Genetic Resources – now Bioversity International) also had her office there.

Pauline Mumford (standing, center) with the MSc Class of ’82 (my first full year at Birmingham) from (L-R) Malaysia, Uruguay, Germany, Turkey, Bangladesh (x2), Portugal, and Indonesia.

By September, an office had been found for me in the main building. This was necessary since, unlike Pauline, I had teaching commitments to undergraduate students on the honours Biological Sciences degree course, as well as having undergraduate tutees to mentor and meet with on a regular basis.

As I said, I’d been recruited to take over, in the first instance, Jack Hawkes’ teaching commitments, which comprised a contribution to the second year module in plant taxonomy, and evolution of crop plants, one of the main components of the CUPGR course. There were also opportunities to develop other courses, and in due time, this is what I did.

At the end of April 1981, Jack called me into his office, handed me his taxonomy lecture notes and said ‘You’re up tomorrow morning’. Talk about being thrown in the deep end. Jack lectured about ‘experimental taxonomy’, patterns of variations, breeding systems and the like, and how taxonomic classification drew on these data. Come the next day, I strode into the lecture theater with as much confidence as I could muster, and began to wax lyrical about breeding systems. About half way through, I noticed Jack quietly walk into the room, and seat himself at the back, to check on how well I was doing (or not). That was one of his mentor roles. He was gone before I’d finished, and later on he gave me some useful feedback—he’d liked what he had seen and heard.

But the lecture hadn’t nearly taken place. One of my colleagues, Dr Richard Lester, who was the lead on the taxonomy module, blithely informed me that he would be sitting in on my lecture the next day. ‘Oh no, you’re not‘ I emphatically retorted. I continued, ‘Walk in and I stop the lecture’. I had never really seen eye-to-eye with Richard ever since the day he had taught me on the MSc Course. I won’t go into detail, but let me say that we just had a prickly relationship. What particularly irked me is that Richard reported our conversation to Jack, and that’s why Jack appeared the next day.

I had quite a heavy teaching load, compared to many of my colleagues, even among those in the other three departments [2] that made up the School of Biological Sciences. Fortunately, I had no first year teaching. Besides my second year plant taxonomy lectures, I developed a small module on agroecosystems in the Second Year Common Course (of which I became chair over the course of the decade).

In their final year, students took four modules each of five weeks (plus a common evolution course). My long-time friend Brian Ford-Lloyd and I developed a module on plant genetic resources. Besides daily lectures, each student had to complete a short research project. I can’t deny that it was always a challenge to come up with appropriate projects that would yield results in such a short period. But I found working alongside these (mostly enthusiastic) students a lot of fun.

Dave Astley

Each year I’d take the group a few miles down the road to the National Vegetable Gene Bank (now the UK Vegetable Genebank) at Wellesbourne, where we’d meet its Director, Dr Dave Astley (who had completed his MSc and PhD, on potatoes with Jack Hawkes at Birmingham). It was a great opportunity for my students to understand the realities of genetic conservation.

I taught a 25 lecture course to the MSc students on crop diversity and evolution, with two practical classes each week during which students would look at as wide a range of diversity as we could grow at Winterbourne (mostly under glass). In this way, they learned about the taxonomy of the different crops, how diversity had developed, their breeding systems, and the like. The practical classes were always the most challenging element to this course. We never knew until each class just what materials would be available.

In 1982, I took a group of students to Israel for a two week course on genetic resources of the eastern Mediterranean. Not all of that year’s intake, unfortunately, as some came from countries that banned travel to Israel.

I developed a module on germplasm collecting, and in the summer months set some field exercises on a synthetic barley population comprising up to ten varieties that differed morphologically, and also matured at different times, among other traits. We would sample this population in several ways to see how each method ‘captured’ the various barleys at the known frequency of each (obviously I knew the proportions of each variety in the population).

The functioning of agroecosystems was something I’d been drawn to during my time in Costa Rica, so I passed some of that interest on to the MSc group, and helped out on some other modules like data management. And I became the Short Course Tutor for students who came to Birmingham for one or other of the two taught semesters, or both in some instances. Looking after a cohort of students from all over the world, who often had limited language skills, was both a challenge and a worthwhile endeavour. To help all of our MSc and Short Course students we worked with colleagues in the English Department who ran courses for students with English as a second language. Each member of staff would record a lecture or more, and these would be worked up into an interactive tutorial between students, ourselves, and the English staff. Once one’s lectures have been pulled apart, it’s remarkable to discover just how many idiomatic phrases one uses quite casually but which mean almost nothing to a non-native speaker.

Each MSc student had to write a dissertation, examined in September at the end of the year (just as I had on lentils in 1971), based on research completed during the summer months after sitting the written exams. Over my decade with the course, I must have supervised the dissertations of 25 students or more, working mainly on potatoes and legumes, and leading in some cases to worthwhile scientific publications. Several of these students went on to complete their PhD under my supervision often in partnership with another research institute like CIP, Rothamsted Experiment Station (now Rothamsted Research), MAFF plant pathology lab in Harpenden, and the Food Research Institute in Norwich.

2020-06-27007

With PhD students Ghani Yunus (from Malaysia) and Javier Francisco-Ortega (from Spain-Canary Islands).

The course celebrated it 20th anniversary in 1989, and among the celebrations we planted a medlar tree (sadly no longer there) in the Biological Sciences quadrangle.

Left of the tree: Professor Smallman, Jim Callow, Trevor Williams, Jack Hawkes. Right of the tree: Mike Jackson, Richard Lester, Mike Lawrence. And many students, of course.


Tutees
Earlier, I mentioned that at the beginning of each academic year every staff member was assigned a group of students (the annual intake then was more than 100 students, and is considerably larger today) as tutees, with whom we would meet on a regular basis. These tutorial sessions, one-on-one or in a small group, were an informal opportunity of assessing each student’s progress, to set some work, and overall to help with their well-being since for many, attending university would be the first time they were away from home, and fending for themselves. The tutorial system was not like those at the Oxbridge colleges.

Most students flourished, some struggled. Having someone with whom to share their concerns was a lifeline for some students. I always thought that my tutor responsibilities were among the most important I had as a member of staff, and ensuring my door was always open (or as open as it could be) whenever a tutee needed to contact me. Not all my colleagues viewed their tutorial responsibilities the same. And I do appreciate that, today, with so many more students arriving at university, staff have to structure their availability much more rigidly, sometimes to excess.

In October 1981, my first final year tutee was Vernonica ‘Noni’ Tong* who went on to complete a PhD with my close colleague, geneticist Dr Mike Lawrence on incompatibility systems in poppies. Noni joined the Genetics Department and rose to become Professor of Plant Cell Biology (now Emeritus). Several others also went on to graduate work. Another, Julian Parkhill, graduated around 1987 or 1988, went on to Bristol for his PhD, and is now Professor of Veterinary Medicine at the University of Cambridge. He was elected a Fellow of the Royal Society in 2014.

I like to think that, in some way, I helped these students and others make wise career choices, and instilled in them a sense of their own worth. At least one former tutee (who completed her PhD at the University of Durham) has told me so, and that made it all worthwhile.


The School of Biological Sciences
In September 1982, Jack Hawkes retired from the Mason Chair of Botany, and a young lecturer, Jim Callow from the University of Leeds, was elected to the position. Jim took on the role of MSc Course leader, but the day-to-day administration fell to Brian Ford-Lloyd (as Tutor) and myself (for the Short Course students). Jim was a physiologist/ biochemist with an interest in biotechnology, but nothing about genetic resources. He also had little understanding (or sympathy, so I felt) for my areas of research and teaching interests. He frankly did not understand, so I never developed a good relationship with him.

Brian Ford-Lloyd

My closest colleague in the department was Brian who had been appointed to a lectureship around 1977 or 1978. He had completed his PhD in the department in 1973, and he and I were graduate students together until I moved to Peru. We became good friends, and this friendship has lasted until today. He also lived in Bromsgrove, and after I returned to the UK on retirement in 2010, Brian (now Professor Ford-Lloyd) and I would meet up every few weeks for a few beers at the Red Lion on Bromsgrove’s High Street, and to put the world to rights.

On reflection, I can say that relationships among the staff of Plant Biology were pretty harmonious, notwithstanding the comment I made earlier. But several staff were approaching retirement as well, so there was quite a change in the department when a couple of young lecturers were also appointed within a year of me, Drs John Newbury and Jon Green, both of whom also rose to professorships late in their careers.

Towards the end of the 1980s, the School of Biological Sciences underwent a fundamental reorganization, abandoning the federal system, and transforming into a single department with a unitary Head of School. Much to the chagrin of my friends and colleagues in Genetics, Jim Callow was selected as the first Head of School under this new arrangement. To replace the old four department structure, we organized ourselves into five research themes. I joined the Plant Genetics Group, moving my office once again closer to other group members. As a member of this group, I probably had two or three of the best years I spent at Birmingham, with Dr (later Professor) Mike Kearsey as my head of group.


Research and publications
My research interests focused on potatoes and legumes, often sustained by a healthy cohort of MSc and PhD students.

One project, funded by the British government from overseas aid budget in partnership with CIP, investigated the options for breeding potatoes grown from true potato seed. A project that we had to pull the plug on after five years.

In another, Brian and I worked with a commercial crisping (potato chips, in US parlance) company to produce improved potato varieties using induced somaclonal variation, leading to some interesting and unexpected implications for in vitro genetic conservation. There was also an interesting PR outcome from the project.

All in all, my group research led to 29 scientific papers in peer-reviewed journals, several book chapters, and a range of contributions to the so-called grey literature (not peer-reviewed, but nonetheless important scientifically). You can open a list of those Birmingham publications here.

I’m also proud of the introductory textbook on genetic resources that Brian and I wrote together, published in 1986. It quickly sold its print run of more than 3000 copies.

Then, in 1989, we organized a weekend conference (with Professor Martin Parry of the Department of Geography) on climate change, leading to the pioneer publication of the conference proceedings in 1990 [3] in this newly-emerged field of climate change science. Brian, Martin and I collaborated almost a quarter of a century later to edit another book on the same topic.

I was fortunate to undertake one or two consultancies during my years at Birmingham. The most significant was a three week assignment towards the end of the decade to review a seed production project funded by the Swiss government, that took us Huancayo in the Central Andes, to Cajamarca in the north, and Cuzco in the south, as well as on the coast. This was an excellent project, which we recommended for second phase funding, that ultimately collapsed due to the conflict with the terrorist group Shining Path or Sendero Luminoso that affected all parts of Peruvian society.

The seed project review team (L-R): Peruvian agronomist, me (University of Birmingham), Cesar Vittorelli (CIP Liaison), Swiss economist (SDC), Carlos Valverde (ISNAR, team leader)

With funding from the International Board for Plant Genetic Resources, one of my PhD students, Javier Francisco-Ortega was able to collect an indigenous legume species from his native Canary Islands in 1989, for his dissertation research. I joined Javier for three weeks on that trip.

Collecting escobon (Chamaecytisus proliferus) in Tenerife in 1989


All work and no play . . .
Each December, the Plant Biology Christmas party was usually held at Winterbourne House. For several years, we organized a pantomime, written and produced by one of the graduate students, Wendy (I don’t remember her surname). These were great fun, and everyone could let their hair down, taking the opportunity for some friendly digs at one staff member or another. In the photos below, I played the Fairy Godmother in a 1987 version of Cinderella, and on the right, I was the Grand Vizier in Aladdin, seen here with graduate student Hilary Denny as Aladdin. In the top left photo, kneeling on the right, and wearing what looks like a blue saucepan on his head, is Ian Godwin, a postdoc from Australia for one year. Ian is now Professor of Crop Science at the Queensland Alliance for Agriculture and Food Innovation. To Ian’s left is Liz Aitken, also a postdoc at that time who came from the University of Aberdeen, and now also a Professor at the University of Queensland.

Then, in the summer months, I organized a departmental barbecue that we held in Winterbourne Gardens, that were part of the department in those days, and now open to the public. In this photo, I’m being assisted by one of my PhD students, Denise Burman.

2020-06-27007 - Copy (2)


Moving on
So why did I leave in July 1991?

Professor Martin Parry

Towards the end of the 1980s I also became heavily involved in a university-wide initiative, known as Environmental Research Management or ERM, to promote the university’s expertise in environmental research, chaired by Martin Parry (I became the Deputy Chair). So, coupled with my own teaching, research, and administrative duties in Biological Sciences, I was quite busy, and on my way to promotion. I was doing all the ‘right things’, and working my way up the promotions ladder (competing with all other eligible staff in the Science Faculty). It was quite helpful that the Dean of the Science Faculty, Professor George Morrison (a nuclear physicist), and someone with his finger on the promotions pulse, also took a close interest in ERM, and I got to know him quite well.

When I handed in my resignation in March 1991, I knew that my application for promotion to Senior Lecturer was about to be approved (I was already on the Senior Lecturer pay scale). By then, however, life in academia had lost some of its allure. And Margaret Thatcher was to blame.

Around 1998 or 1989, the Thatcher government forced a number of ‘reforms’ on the universities, bringing in performance initiatives and the like, without which the government would not consider either increased funding to the system or pay increases for staff.

So we all underwent performance management training (something I became very familiar with during the next phases of my career). It was made clear that staff who were struggling (as teachers, researchers, or even with administration) would be offered help and remedial training to up their game. Those of us performing well (which included myself) were offered the opportunity to take on even more. It was a breaking point moment. With the increased emphasis on research performance and research income, I felt that my time in academia had almost run its course. My research interests did not easily attract research council funding. I was beginning to feel like a square peg in a round hole.

So, when in September 1990, a job advert for the position of head of the Genetic Resources Center at IRRI landed on my desk, I successfully threw my hat in the ring, and joined IRRI in July 1991, remaining there for the next 19 years, before retiring back to the UK in May 2010.

With few regrets I resigned and prepared for the move to the Philippines. I had to see my students (both undergraduate and MSc) through their exams in June before I could, with good conscience, leave the university. My last day was Friday 30 June, and Brian often reminds me that when he came round to our house in Bromsgrove to say goodbye and wish me well the following day, he was shocked at how white-faced and stressed I appeared. Well, it was a big move and I was leaving the family behind for the next six months, and heading off into the unknown to some extent. Early on Sunday morning I headed to Birmingham International Airport to begin the long journey east via London Heathrow.


But that’s not quite the end of my academic life. Not long after I joined IRRI, I was appointed Affiliate Professor of Agronomy at the University of the Philippines-Los Baños (UPLB). Then, with Brian, John Newbury, and colleagues at the John Innes Centre, we developed a collaborative research project looking at the application of molecular markers to study and manage the large rice germplasm collection at IRRI. I was appointed Honorary Senior Lecturer at Birmingham, and for several years when I was back on home leave I would visit the university and lecture to the MSc students on the realities and challenges of managing a large genebank, as well as following up on our research collaboration.

That came to an end when the funding ran out after five years, and I moved out of research and genebank management at IRRI into a senior management position as Director for Program Planning and Communications.

As Director for Program Planning and Communications, I had line management responsibility for (L-R) Communications and Publications Services (Gene Hettel), IRRI’s library (Mila Ramos), IT Services (Marco van den Berg), the Development Office (Duncan Macintosh), and Program Planning (Corinta Guerta).


Was I cut out for a life in academia? Yes and no. I think I fulfilled my duties conscientiously, and with some success in some aspects. I admit that my research contributions were not the strongest perhaps. But I did mostly enjoy the teaching and the interaction with students. I always felt that not enough weight was given to one’s teaching contributions. Back in the day research was the main performance metric, and increasingly the amount of research funding that one could generate. That was a bit of a treadmill. So while I mostly enjoyed my decade at Birmingham, I found the next nineteen years at IRRI far more satisfying. I had the opportunity to put my stamp on an important component of the institute’s program, bringing the genebank and its operations into the 21st century, and ensuring the safety and availability of one of the world’s most important germplasm collections. Having left genebanking behind in 2001, I then enjoyed another nine years as a member of the institute’s senior management team. And, on reflection, I think those management years gave me the most satisfaction of my career.


Roger Rowe

[1] Steph also worked at CIP as an Associate Geneticist assisting the head of department, Dr Roger Rowe (who co-supervised my PhD research), to manage the germplasm collection. Prior to joining CIP, Steph had been a research assistant with the Commonwealth Potato Collection (CPC) that, in those days, was housed at the Scottish Plant Breeding Station just south of Edinburgh. The CPC is now maintained at the James Hutton Institute west of Dundee.

[2] These were: Zoology & Comparative Physiology; Genetics; and Microbiology. With Plant Biology, the four departments were administratively semi-independent in a federal School of Biological Sciences, coming together to teach a degree in Biological Sciences, with specialisms in the component disciplines. All first year biologists took the same common course, as well as a multidisciplinary common course in their second year and an evolution course in the third and final year.

In 2000, the School of Biological Sciences merged with the School of Biochemistry to form the School of Biosciences. Then, in 2008, there was a much larger university-wide reorganization, and Biosciences became part of the College of Life and Environmental Sciences, one of five Colleges that replaced Faculties across the university.

[3] Jackson, M., B.V. Ford-Lloyd & M.L. Parry (eds.), 1990. Climatic Change and Plant Genetic Resources. Belhaven Press, London, p. 190.

* On 6 May 2021, it was announced that Noni had been elected as a Fellow of the Royal Society!

Exploring the mysteries of sex . . . and taking control!

I’ve been fascinated with sex (especially controlled sex) since my undergraduate days at the University of Southampton between 1967 and 1970. We were the socially permissive flower power generation.

But before you get too excited about this post’s content, I need to point out that, as a former botany student, I’m referring to sex among plants! And plant breeding. The real flower power!


Joe Smartt and Edgar Anderson

I guess it all started with two final year honours course on plant speciation (how different species evolve) and plant breeding, taught by geneticist Dr Joe Smartt. It was through the first that I discovered the beauty of introgressive hybridization (a mechanism that blends the gene pools of separate species; see a diagrammatic explanation in this post), a concept first expounded by another of my botanical heroes, Dr Edgar Anderson. And, there was this transformative book to dip into: Variation and Evolution in Plants (published 1950) by another great American botanist, G Ledyard Stebbins. In Joe’s introduction to plant breeding, we followed yet another classic text: Principles of Plant Breeding by American plant breeder and geneticist, Robert W Allard.

Trevor Williams

And when I moved to the University of Birmingham as a graduate student in September 1970, to study for a Master’s degree in plant genetic resources, Trevor Williams taught a fascinating course on plant variation, emphasising their breeding systems, and how understanding of these was important for the conservation and use of genetic resources. Much of my career subsequently was then spent studying variation and breeding systems in two important crop species, potatoes and rice, and a minor legume species, the grasspea.


Plants reproduce in the most weird and wonderful ways. If they didn’t, humanity’s days would be numbered. Where would we be if wheat and rice plants failed to produce their grains, the potato its underground treasure of tubers, or the banana those abundant hands of green fruits? No wonder in times past folks celebrated a Harvest Festival each autumn to give thanks for a successful harvest.

Beautiful acorns on the pedunculate oak, Quercus robur

You only have to look about you in late summer, as I did each day on my walks last year, to see Nature’s bounty all around—the consequence of plant sex. The trees and bushes were dripping with fruit—2020 was a mast year (as I have written about before). I don’t think I’ve seen such a year for acorns on the oak trees. And the chestnuts, hazels, and so many others. Such exuberant fecundity!


Have you ever looked closely at a ‘typical’ flower? Well, for the most part you can see the female pistil(s) comprising the style, stigma, and ovary, and the male stamens that carry the pollen.

However, there are many variations on this basic theme, different arrangements of the sex organs, even separate male and female flowers on the same plant (known as monoecy; maize is a good example) or separate plants (dioecy; holly). Differences in plant reproductive morphology promote self fertilization or cross fertilization. In addition, there is a host of physical and genetic mechanisms to promote or prevent self fertilization, as well as limiting sex between different species. All of this is aimed at ensuring a next generation of plants, and the one after that, and so on.

Plants attract a host of pollinators: visiting insects such as bees and moths, even some nectar-feeding marsupials and bats. I watched a remarkable sequence on David Attenborough’s latest blockbuster series, A Perfect Planet a few nights ago, about the fascinating pollination role of fig wasps.

Then I came across this tweet. Cockroaches of all creatures!

Wind pollination is a common feature of many grasses. However, several wheat and rice species, for example, promiscuously dangle their stamens apparently seeking cross fertilization. But they have often self fertilized before their flowers open. That’s not to deny that some cross pollination does occur in these species, but it’s generally the exception.

Some plants appear to reproduce sexually, but they have got around actual sex through a mechanism known as apomixis. These plants produce seeds but not following the normal fertilization process, so each seedling is a genetic copy of the ‘mother’ plant.

Berries on a diploid potato species, Solanum berthaultii

Other species have given up sex (almost) altogether, instead reproducing vegetatively with the ‘offspring’ being genetically identical (or essentially identical) to the mother plant. In others, like the potato, propagation is primarily through tubers. Yet, in the Andes especially where potatoes were first domesticated, many varieties are extremely sexually fertile, and produce berries rather like small tomatoes, although they are inedible. They contain lots of small seeds that we often refer to as true potato seed or TPS. In fact, in one experiment I observed at the International Potato Center (CIP) in Peru where I worked during the 1970s, a colleague of mine recorded a particular variety known as Renacimiento producing more than 20 t/ha of berries, in addition to about 20 t of tubers.


Anyway, I digress somewhat. During the years I was active scientifically (before I joined the ranks of senior management at the International Rice Research Institute in the Philippines, IRRI in the Philippines), I looked into various aspects of reproductive biology of several species.

In my doctoral research, carried out in the Andes of Peru, I investigated the breeding relationships between potato varieties with different numbers of chromosomes. The potato we consume almost on a daily basis (at least in my home) is known scientifically as Solanum tuberosum, and has four sets (48 in total) of chromosomes. It is what we call a tetraploid. Many other potato species have only two sets or 24 chromosomes, and are known as diploids. The tetraploid forms are mostly self fertile; diploids, on the other hand, have a genetic system of self incompatibility, and will only produce seeds if pollinated with pollen from a different genetic type.

This or similar system of self incompatibility is known from other species, like poppies for example. Anyway, the outcome is that ‘self’ pollen will not germinate on the stigma. The two images below (of various pollinations among wild potatoes), show a typical compatible pollination and fertilization event. Lots of pollen grains have stuck to the stigma, have germinated and grown the length of the style to reach the numerous ovules in the ovary.

In these next images, showing incompatible pollinations, few pollen grains remain on the stigma, not all germinated, and those that did, grew erratically. A few pollen tubes may reach the ovules but compared to the compatible pollinations, they are many fewer.


In the 1970s, one of my colleagues at CIP, Chilean breeder/agronomist Primo Accatino, championed the use of TPS as an alternative to propagation from seed tubers. One of the weak links, as it were, in any potato production cycle is the availability and cost of disease-free seed tubers. So TPS was seen as potentially fulfilling a gap in many developing countries that had neither the infrastructure nor staff to support seed potato production.

As I mentioned earlier, the common potato is a tetraploid with four sets of chromosomes, and this complicates the genetics and breeding. Breeding at the diploid level could be more straightforward. At least that was the hope and the challenge when I embarked on a project to produce TPS lines through inbreeding diploid potatoes and single seed descent. Funded by the British government, it involved scientists at the University of Birmingham (where I had joined the staff in 1981), the former Plant Breeding Institute in Cambridge, and CIP in Peru.

Was this just a pipe dream? Perhaps. Before developing the project concept, I’d had extensive discussions with my colleague at Birmingham, geneticist Dr Mike Lawrence who worked on self incompatibility in poppies (that has a similar genetic system to that in potatoes). His experience with poppies showed that if one tried long and hard enough, it was possible to break the self incompatibility.

Flowers of Solanum chacoense

We tried—and ultimately failed—closing the project after five years. We decided it would take just too much investment to make progress. If only we’d had available then what are now helping to transform potato breeding: self compatible diploid lines. At the end of the 1990s, scientists working at the USDA potato collection in Sturgeon Bay, Wisconsin identified self compatible lines in the widespread wild species Solanum chacoense. The Sli gene that confers self compatibility is apparently more widespread than previously thought, and has now been bred into diploid lines. Had we had those self compatible lines back in the 1980s, our work would have perhaps have reached a better conclusion.


When I moved to the Philippines in 1991 to head IRRI’s Genetic Resources Center (GRC), I had a collection of around 100,000 different lines of rice, cultivated and wild, to conserve in the institute’s International Rice Genebank.

With my colleagues in GRC, Dr Lu Bao-Rong, Amita ‘Amy’ Juliano and Dr Ma Elizabeth ‘Yvette’ Naredo, I spent several years investigating the breeding relationships between the cultivated forms of rice, Oryza sativa from Asia, and O. glaberrima from West Africa, and the closest wild Oryza species with a similar AA genome. We made thousands of crosses with the aim of understanding not only the breeding relationships, which is important to be able to better use wild species in rice breeding, but also to understand the taxonomy of wild and cultivated rices.

Pollinations (L) in the genebank screenhouse among AA genome species from Asia, Australia, and the New World, and (R) a crossing polygon from those pollinations expressed in terms of spikelet fertility.

This work led to several scientific publications, which you can access here: just look for publications with our names.


Another aspect of plant sex, important for genebank managers, is how the environment can affect plant fertility. While the seeds of many species (including rice and potatoes) can be stored at a low temperature (typically -18ºC) and for decades if not longer, it is essential that only the best seeds are placed in a genebank for long term conservation. That means ensuring that the growing conditions are the best possible to produce seeds of high quality—and in abundance—during an initial multiplication or later on for rejuvenation after some years of storage, if seed stocks are running low, or there are signs that seed viability may be declining.

At IRRI, in Los Baños south of Manila, we were faced with managing a large germplasm collection of rice lines from all over Asia, from Africa, and South America as well. And these had been collected over a very broad latitudinal range, while Los Baños sits at around 14ºN. We were attempting to grow in a single location many different rice lines, some of which had evolved under more temperate conditions, under different temperature regimes and daylengths.

Kameswara Rao

With my colleague Dr Kameswara Rao (and Professor Richard Ellis from the University of Reading, UK) we spent three years carefully analyzing the effects of different growing environments on seed quality for conservation. Just look for publications here under our names to check out what we achieved. The important changes we made to how we grew rice lines for optimum seed quality have endured until today, although (as I have reported elsewhere) changes to post-harvest handling of seeds have been improved through the work of former IRRI seed physiologist, Dr Fiona Hay.


So, as you can see, there are many different, and interesting, facets to plant sex. And as plant breeders and gene conservationists, we aim to exploit the idiosyncrasies of each species to produce more productive crop varieties or ensure the long term survival of varieties that no longer find favor with farmers, or wild species whose habitats are threatened through agricultural expansion, increasing urbanization, or climate change.


 

I was doctored . . . but the benefits were long-lasting

Philosophiae Doctor. Doctor of Philosophy. PhD. Or DPhil in some universities like Oxford. Doctorate. Hard work. Long-term benefits.

Forty-five years ago today I was awarded a PhD by the University of Birmingham. As a freshman undergraduate at the University of Southampton in October 1967, I was naïvely ignorant of what a PhD was [1]. And I certainly never had any ambition then or inkling that one day I would go on to complete a doctorate in botany. Let alone a study on potatoes!

Although registered for my PhD at the University of Birmingham, I actually carried out much of the research while working as an Associate Taxonomist at the International Potato Center (CIP) in Lima, Peru. My thesis was supervised by eminent potato experts Professor Jack Hawkes, head of the Department of Botany (later Plant Biology) in the School of Biological Sciences at Birmingham, and Dr Roger Rowe, head of CIP’s Department of Breeding & Genetics.

Jack Hawkes (L) and Roger Rowe (R)

On 12 December 1975 I was joined at the Birmingham graduation ceremony or congregation by Jack and Dr Trevor Williams (on my left below, who supervised my MSc dissertation on lentils). Trevor later became the first Director General of the International Board for Plant Genetic Resources (now Bioversity International). I’d turned 27 just a few weeks earlier, quite old in those days when it wasn’t all that unusual for someone to be awarded a PhD at 24 or 25, just three years after completing a bachelor’s degree. My research took four years however, from 1971, when I was awarded the MSc degree in genetic resources conservation at Birmingham.

The moment of being ‘doctored’ in the university’s Great Hall.

Sir Peter Scott, CH, CBE, DSC & Bar, FRS, FZS (by Clifton Ernest Pugh, 1924–1990)

As a biologist, it was particularly special that my degree was conferred by one of the most eminent naturalists and conservationists of his age, Sir Peter Scott (son of ill-fated Antarctic explorer Captain Robert Falcon Scott), who was Chancellor of the University of Birmingham for a decade from 1973.


According to the Birmingham PhD degree regulations today, a candidate must enter on a programme, normally of three years’ duration, in which the key activity is undertaking research, combined with appropriate training. Registered students must produce a thesis which makes an original contribution to knowledge, worthy of publication in whole or in part in a learned journal.

It was much the same back in the 1970s, except that we had eight years from first registration to submit a thesis. By the end of the 1980s this had already been reduced to four years.

Like the majority of PhD theses I guess, mine (The evolutionary significance of the triploid cultivated potato, Solanum x chaucha Juz. et Buk.) was a competent piece of original research, but nothing to write home about. However, I did fulfil the other important criterion for award of the degree as three scientific papers from my thesis research were later accepted for publication in Euphytica, an international journal of plant breeding:

  1. Jackson, MT, JG Hawkes & PR Rowe, 1977. The nature of Solanum x chaucha Juz. et Buk., a triploid cultivated potato of the South American Andes. Euphytica 26, 775-783. PDF

  2. Jackson, MT, PR Rowe & JG Hawkes, 1978. Crossability relationships of Andean potato varieties of three ploidy levels. Euphytica 27, 541-551. PDF

  3. Jackson, MT, JG Hawkes & PR Rowe, 1980. An ethnobotanical field study of primitive potato varieties in Peru. Euphytica 29, 107-113. PDF


It took me just over six weeks to write my thesis of about 150 pages. I achieved that by sticking to a well-defined daily schedule. I was under a tight time constraint.

Having returned from Peru at the beginning of May 1975, I still had a couple of things to wrap up: checking the chromosome numbers of some progeny from experimental crosses, then preparing all the hand drawn diagrams and maps (fortunately my cartographic skills from my geography undergraduate days at the University of Southampton placed me in good stead in this respect) and photographs. My thesis was typed on a manual typewriter; none of that fancy word processing and formatting available today. Nevertheless, I did submit my thesis by the mid-September deadline to meet the December graduation. I could hardly return to CIP by the beginning of the New Year without a PhD in my back pocket.

Looking at my thesis 45 years on, it does seem rather ‘thin’ compared to what PhD students can achieve today. In the early 1970s we didn’t have any of the molecular biology techniques that have become routine (essential even) today, to open up a whole new perspective on plant diversity, crop evolution, and crop domestication that were the basic elements of my thesis research.

Back in the day, it was normal for a PhD thesis to be examined by just one external examiner and an internal university one, usually from a candidate’s department and often the person who had supervised the research. Today the supervisor cannot be the internal examiner at many if not all universities in the UK, and it has become more common for a PhD student to have a committee to oversee the research.

So, towards the end of October 1975 I met with my examiners for what turned out to be a viva voce of over three hours. It got off to a good start because the external examiner told me he had enjoyed reading my thesis. That allowed me to relax somewhat, and we then embarked on an interesting discussion about the work, and potatoes and their evolution in general. The examiner found just one typographical error, and I corrected that immediately after the viva. I then sent the thesis for binding and official submission to the university library (where it languishes on a shelf somewhere, or maybe reduced to just a microfilm copy).


On the evening of my examination I rang my parents to tell them the good news, only to discover that my dad had suffered a heart attack earlier in the day. That certainly but a damper on the exhilaration I felt at having just passed my final exam – ever! Dad was resting, but expected to make a full recovery. By December, when the congregation was held, he was back on his feet, and he and mum attended the congregation. Having been allocated only two guest tickets, Steph gave hers up so mum and dad could attend.

They gave me a Parker fountain pen, engraved with my name and date, as a graduation present. I still have it.


So, I completed a PhD. Was it worth it? I actually waxed lyrical on that topic in a blog post published in October 2015. When the idea of working in Peru was first mooted in February 1971, it was intended to be just a one year assignment from September. Registering for a PhD was not part of the equation. But circumstances changed, my departure to Peru was delayed until January 1973, so Jack registered me for a PhD, setting me on a path that I have never regretted.

In any case, once I was established at CIP in Lima, I quickly came to the viewpoint that a career in international agricultural research was something I wanted to pursue. And without a PhD under my belt that would have been almost impossible. The PhD degree became a sort of ‘union card’, which permitted me to work subsequently in Central America, as a lecturer at the University of Birmingham for a decade, and almost 19 years up to my retirement in 2010 at the International Rice Research Institute (IRRI) in the Philippines in roles managing the world’s largest genebank for rice, and then as one of the institute’s senior management team.


[1] Unlike our two daughters Hannah and Philippa. They grew up in a home with parents having graduate degrees (Steph has an MSc degree in genetic resources from Birmingham). And when we moved to the Philippines in 1991, almost every neighbor of ours at IRRI Staff Housing had a PhD degree. So although it was never inevitable, both went on to complete a PhD in psychology (although different branches of the discipline) in 2006 and 2010 respectively, at the University of Minnesota and Northumbria University.

L (top and bottom): Phil, Hannah, and Steph after the graduation ceremony; Hannah with her cohort of graduands, Emily and Michael in Industrial & Organizational Psychology on 12 May 2006. R (top and bottom): Phil’s graduation at Northumbria University on 11 December 2010.

Combatting jet lag for job interviews across the globe

I started my first job on 1 January 1973. I retired (at 61) on 30 April 2010, after more than 37 years continuous employment. All but ten years were spent working abroad, in South and Central America, and in Asia. I also got to travel to more than 60 countries in the course of my work in international agricultural research and academia.

I’ve held five different positions in three organizations: the International Potato Center (CIP, in Lima, Peru); the University of Birmingham; and the International Rice Research Institute (IRRI, in the Philippines). However, I was interviewed for just two of those five positions, although during the course of my career I have flown all over the world for at least three other job interviews, none of which were successful as there always seemed to be an ‘internal candidate’ waiting in the wings. And in all cases, I had to combat jet lag to a greater or lesser extent all the while. You run on adrenaline and a certain degree of sang froid through the interviews [1].


Jack Hawkes

My first job at CIP, as an Associate Taxonomist, came about almost by chance. In September 1970 I had enrolled on a one year MSc course on plant genetic resources conservation and use in the Department of Botany at the University of Birmingham. The head of department, Professor Jack Hawkes, was an internationally-renowned potato expert and one of the pioneers of the 1960s genetic conservation movement. Just before Christmas that year he set off for a two month wild potato collecting trip to Bolivia, calling at CIP in Lima to seek some logistical help with the expedition. It was during that visit to CIP that the Director General, Dr Richard Sawyer mentioned that he wanted to send one of his young staff to the Birmingham course in September 1971. And did Jack know anyone who could come to CIP, for just one year, to help look at after the center’s growing germplasm collection of native Andean potato varieties (of which there are thousands).

On returning to the UK at the end of February 1971, Jack phoned me within a day of his return, and mentioned the position at CIP, and asked if I would be interested. I had no hesitation in saying an emphatic Yes! I’d always wanted to visit Peru, and having a position, albeit short-term, in genetic resources conservation was almost too good to be true.

Things didn’t go exactly to plan. There was a delay, while CIP negotiated with the UK government through the Overseas Development Administration (or was it Ministry of Overseas Development back in the day). My travel to Peru was put on hold, but I did register for and begin studies on potatoes towards a PhD in botany.

Richard Sawyer

Sometime during 1972 (I don’t remember exactly when) Richard Sawyer visited Birmingham, and I had an opportunity to sit down with him and Jack to discuss my posting in Lima. By then it had been agreed that it would be longer than just one year, and that I’d stay there long enough to complete the research for my PhD. I must have said all the right things, since Sawyer agreed to this arrangement. What I can say is that it wasn’t a formal interview as such. He had a habit of meeting prospective candidates around the world, often in airports, and deciding there and then if he wanted to hire them.

Anyway, to cut a long story short, I flew to Lima on 4 January 1973 and remained there until April 1975, when I returned to Birmingham to complete the residency requirements for my PhD and to submit my thesis. But before returning to the UK, I met with Sawyer concerning my future ambitions with CIP. And he made me an offer to move into CIP’s Outreach Program (later Regional Research) provided I successfully defended my thesis.

I was back in Lima just before the end of December, but not sure then to which regional office I would be posted although we had already initiated some plans for a move to Central America, about which I wrote recently. In April 1976, Steph and I left Lima headed for Turrialba in Costa Rica. And we remained there for almost five years, until the end of November 1980 in fact.

Returning to Lima, I had expected to move on to another of the CIP’s regional offices. Brazil was proposed, but when that fell through, we set about planning to move to the Philippines.


But fate intervened. Around September or October 1980 I heard about a new lectureship (in plant genetic resources) in my old department (by then renamed Plant Biology) at the University of Birmingham. I was torn. I was very happy at CIP and enjoyed the work I had been doing in various aspects of potato production. There again, a tenure-track university lectureship was too good an opportunity to ignore. So I sent in an application.

Around mid-December or so, I received feedback that my name would be put on the short list of candidates for interview, with one proviso. I had to commit to travel to Birmingham (at my own expense) for interview. After a long discussion with Steph, and looking at the most economical way of flying back to the UK (I eventually used Freddie Laker’s Skytrain airline into London-Gatwick from Miami), I confirmed my availability for interview during January.

I was in Birmingham for just over 36 hours (two nights) and afterwards I took the opportunity of visiting my mother who was staying with my eldest brother Martin and his family in Gloucestershire, south of Birmingham. I was in the UK for just under a week all told.

We were three candidates (one female, two male) and I guess that I was, to all intents and purposes, the ‘internal candidate’ (so I can’t rail too much about internal candidates) being the only one with an existing affiliation with the university. I was the last to be interviewed and arrived at the interview room a short while before my turn, to find the first candidate waiting in the corridor while the second was being grilled. We had been told to wait outside the interview room until all interviews had been concluded. One of us would be then invited back in to discuss a possible job offer.

With dry mouth and somewhat sweaty palms (and feeling rather jaded through jet lag) I entered the interview room with some trepidation. However, I was greeted by some friendly faces. The interview panel (certainly five persons) was chaired by Professor John Jinks, head of the Genetics Department and a formidable intellect. He was supported by Professor Derek Walker, head of the Biochemistry Department and Dean of the Science Faculty. There were three staff from Plant Biology: Jack Hawkes, Dr Dennis Wilkins (a fierce ecologist whose interviewing style seemed like a dog worrying a bone – I’d already come across him during my interview for a place on the MSc course, and as a graduate student), and Dr (later Professor) Brian Ford-Lloyd, who I’d known since my early graduate days and who has remained a lifelong friend and colleague with whom I have since published three books and many scientific papers. There may have been another person from the university administration, but I don’t recall.

I guess the interview must have lasted about 40 minutes, each member of the panel taking turns to probe my suitability for this lectureship. Unlike interviews for academic and research positions nowadays, I did not have to present a seminar to the department or be ‘interviewed’ by anyone outside the panel. (Incidentally, when the Mason Chair of Botany became vacant in 1982 on Jack Hawkes’ retirement, none of the staff met any of the professorial candidates nor were they expected to present a seminar).

Interview over, I joined the other two candidates outside, each of us deep in our own thoughts and very little conversation among us. After what seemed an age, but was probably no more than about 15 minutes, the door opened, and Brian came out to invite me back. John Jinks told me that the panel had agreed to offer me the lectureship and asked if I would accept it. I had already discussed with Steph what my answer would be under these circumstances. Unequivocally yes!

I don’t remember much after that. Except that Jack invited me for dinner at his house. I was staying in one of the guest rooms at Staff House in the center of the Birmingham campus. Early next morning, I made my way to the railway station and headed south for a few days before flying back to Peru and telling Steph (and our young daughter Hannah, almost three) the good news.


I joined the Plant Biology faculty on 1 April 1981 and spent ten years teaching undergraduate classes in flowering plant taxonomy, agricultural systems (as a component of a second year common course), and an honours course (with Brian) on plant genetic resources. But most of my teaching was at graduate level, to students from all over the world, who came to Birmingham for its world-renowned MSc course on genetic resources.

Then there was research on potatoes and legumes, and during this decade I supervised a number of graduate students to successfully submit their PhD theses. I had some administrative responsibilities that we were all expected to carry, some more than others. Towards the end of the 80s, however, things were changing at the university, and Margaret Thatcher’s government intervention in higher education was causing considerable disruption and disquiet. I found myself increasingly disillusioned with academic life.

Fate intervened, once again. I received notice of a new position at the International Rice Research Institute (IRRI) in the Philippines to lead one of the world’s most important genebanks. I decided to throw my hat in the ring. It was not an easy decision. Since IRRI was a sister institute to CIP, funded the same way through the Consultative Group on International Agricultural Research (or CGIAR) I knew, more or less what I would be letting myself in for if I joined IRRI.

However, there were more pressing personal issues. When we returned to the UK in 1981, our elder daughter Hannah was almost three. Her sister Philippa was born in May 1982. In 1991 they were thirteen and nine, and about to make the transition from from middle to high school, and from first to middle school, respectively. How would they cope with a move halfway across the world, leaving everything familiar behind, all their friends, and moving into an entirely new education system (we’d already decided that boarding school in the UK would not be an option).


Klaus Lampe

In early January 1991 I was invited for interview at IRRI, and flew with British Airways on a flight from London-Gatwick via Abu Dhabi and Hong Kong. The interviews were scheduled for Tuesday to Thursday, three rather intensive days of panel discussions, one-on-one meetings with senior staff, and a seminar. So I chose a flight that would get me into Manila on the Monday afternoon. Well, that was the plan. Arriving at Gatwick I discovered that my flight was delayed about 12 hours. Our designated 747 had a mechanical fault that could not be sorted easily, so we had to wait for a replacement plane to arrive from Florida before being turned around for the flight to the Far East. What a miserable experience. As a result I arrived to IRRI’s research campus in Los Baños (about 65 km south of Manila) around 01:30 on Tuesday morning and, checking over the interview schedule that had been left in my room at IRRI’s guesthouse, noted to my distinct discomfort that I had a breakfast meeting with the Director General, Dr Klaus Lampe, and his three Deputies at 07:00. Having left a request to be woken at 06:15, I took a sleeping pill, not that it helped much .

My internal clock was eight hours awry, but somehow I made it through the breakfast, and the next three days, taking a flight back to the UK late on Thursday night. I think I must have slept for a week once I was back in the UK.

There were three candidates for the genebank position. And we all had MSc (genetic resources) and PhD degrees (two on potatoes, one on rice) from the University of Birmingham and with Jack Hawkes as our PhD supervisor. I knew the other two candidates very well. One managed the Vegetable Genebank at Wellesbourne near Birmingham and the other headed the genebank at another CGIAR center in Nigeria, IITA. Although we overlapped some days at IRRI, our schedule of interviews and meetings meant that we hardly saw anything of each other.

On reflection, the interview schedule was gruelling, with hardly any time to catch one’s breath. We were kept on the go all the time, often with just short breaks between one interview and the next. It was an IRRI tradition to involve as many of the staff in interviewing candidates as possible, with a multiplicity of interview panels representing the different disciplines or a mixture [2]. And of course there was the more detailed interaction with staff in the genebank in my case.

Because the different panels did not interact with one another, candidates (as in my case) were faced with the same line of questions across different panels. Very repetitive and tiresome. And there were, in my opinion, the totally unacceptable and asinine questions from some IRRI staff, some of which received short shrift from me.

Let me give you two or three examples. I was asked if I was prepared to work hard. One line of questioning seemed to question my suitability for joining a center like IRRI and the CGIAR in general. I answered by a question: when did the person join the CGIAR? I was able to reply that I had joined and left the CGIAR years before this particular person had even first entered international agricultural research. 15: love to me! Another scientist, British, was obsessed with my undergraduate career and how successful I had been, notwithstanding that I had graduate degrees, and had been working already for almost 20 years.

A couple of weeks after arriving back in the UK I received a phone call from Lampe offering me the position, which I accepted after some negotiation over the salary and benefits package they originally put on the table. I joined IRRI on 1 July that year, and remained there until my retirement a decade ago.

After successfully running the genebank, in 2001 I was asked by Director General Ron Cantrell (with Board of Trustees approval) to join the senior management team, and become IRRI’s Director for Program Planning and Communications, a position I held until my retirement 2010.


[1] At one interview for the Crop Trust in Rome, I was interrupted by someone as I was delivering my seminar, a vision for the future of the organization. After the second interruption, in which this person had tried to ‘correct’ me, I had to tell her that this was my seminar, not hers, and went on to explain my thoughts on web presence. As it turned out I was not selected, but the organization did adopt my proposal for a more meaningful URL for its website.

On another occasion at Trinity College, Dublin, I delivered my seminar in the very lecture theater (in the Department of Botany) where Michael Caine had his wicked way with Julie Walters in the 1983 film Educating Rita.

When I interviewed for a position at ICARDA in Syria, much to my consternation and many members of staff the internal candidate accompanied me to one of the panel interviews, and even sat in on the interview. Needless to say a stop was soon put to that. Very unprofessional for senior management to even allow this to happen.

[2] When I joined IRRI and was involved in interviewing candidates (sometimes as chair of the selection committee) I tried to streamline the process somewhat, reducing the number of panel interviews per se, but giving more time for informal interactions, but giving more responsibility to the selection panel.


 

What is it about September?

. . . often a mellow month, the transition from the hot, summer months to the cooler days of autumn.

When we worked overseas during the 1970s we would return to the UK each September on home-leave. And mostly enjoyed excellent weather.

I think September Song, that classic from 1938 and performed here by Jeff Lynne on his 1990 album Armchair Theatre, sums up the month just right.

September is also a Jackson birthday month. My father, Fred Jackson, was born on 15 September 1908. My eldest brother Martin and youngest grandson Felix share a birthday, 1 September, but 74 years apart, being 81 and seven respectively this year. And second grandson Elvis celebrates his birthday on 24 September. He will be nine.

Felix and Elvis in May 2020


It’s also a month when significant things happened during my career.

Fifty years ago, in September 1970, I enrolled at the University of Birmingham for the one year MSc degree course in Conservation and Utilization of Plant Genetic Resources run by the Department of Botany in the School of Biological Sciences. I had been in the university just once before, in the early summer of 1967, when I sat my Biology Advanced Level practical exam in the School’s first year laboratory, never anticipating I would be there again to study three years later.

A year later, in September 1971 I had expected to be on my way to Peru in South America, to join the International Potato Center (CIP) on a one-year contract to help manage the center’s potato germplasm collection. That didn’t happen then, but took until January 1973 before I departed these shores.

In September 1980, while winding down my five year assignment in Costa Rica, I heard about a lectureship that had just been advertised in the Department of Plant Biology (formerly Botany) at Birmingham. I sent in my application and successfully interviewed for the position in January 1981, joining the faculty in April.

Moving on a decade, it was during September 1990 that I first heard about a new position at the International Rice Research Institute (IRRI) in the Philippines as Head of the newly-created Genetic Resources Center. I was interviewed in January 1991 and joined the institute in July that year remaining there for almost 19 years before retiring in April 2010.


It’s now 2020. So what does September hold in store? Hopefully, it will be the month our house sale is completed and we move north to Newcastle upon Tyne.

Science publications that influenced my choice of career . . .

I’m sure, like me, many scientists have a few publications that they treasure. No, I’m not referring to any which they themselves authored; rather, publications that made them sit up and pay attention, so to speak. And, in doing so, particularly stimulated their interest and perhaps even guided their own scientific careers subsequently.

I’ve now been retired for ten years, but I still look back to how I got started in the world of plant genetic resources fifty years ago, and some of the scientific publications that pointed me in that direction. Let me backup a little and explain how this came about.

In 1967, I was accepted on to a BSc degree course at the University of Southampton (on England’s south coast) to study environmental botany and geography. I’ve written elsewhere about the three very happy years I spent in Southampton until graduation in July 1970.

The core of my degree course, particularly in my third or senior year, was a two semester ecology module taught in the Botany department, and different aspects of physical geography (such as geomorphology, biogeography, and climatology) in the Geography department. But I also took several shorter elective modules in Botany, including plant speciation, plant breeding, and population genetics. This latter course was taught by one of the pioneers in this field, Vice Chancellor Professor Sir Kenneth Mather who came to Southampton from the University of Birmingham (where he had been head of the Department of Genetics). He claimed (probably with some justification) that he was the only teaching Vice Chancellor at that time in the UK.

Joyce Lambert

We were a small group of only six or so ecology students, and this module was taught by quantitative ecologist Dr Joyce Lambert (who was also my personal tutor). All of us were required to submit an extended essay of 4-5000 words on an ‘ecological topic’ of our choice. It goes without saying that Joyce hinted she would prefer essays about her interest, namely the application of numerical methods to study vegetation landscapes.

I did not heed Joyce’s ‘advice’; I guess she was not best pleased. Instead, and with encouragement from genetics lecturer Dr Joe Smartt, I chose to explore the relationship between ecology, genetics, and taxonomy (the related fields of ecological genetics and experimental taxonomy) in an essay about the concept of ‘ecotypes’. Simply put, an ecotype is a distinct form or race of a plant occupying a particular habitat.

So that was my aim. What would be my entry point? And which literature would be most useful for my purpose?

From the 1920s onwards, several botanists (Göte Turesson in Sweden, JW Gregor in Scotland, and three staff at the Carnegie Institute of Washington in Stanford: geneticist Jens Clausen, physiologist William Hiesey, and taxonomist David Keck) had studied the variation of species (genetically, physiologically, and taxonomically) in relation to their environments, and the role of natural selection on plant adaptation. There was a wealth of literature to delve into. But where to begin?

Jack Heslop-Harrison

I was fortunate that, just a few years earlier, Professor Jack Heslop-Harrison (then Mason Professor of Botany at the University of Birmingham) published an important review paper about what became for me a fascinating branch of botanical science, the study of variation within species in relation to environment.

Forty years of genecology, published in Advances in Ecological Research in 1964 (Vol. 2: 159-247) was, for me, one of those formative publications. Not only was the review thoroughly comprehensive in its coverage, but had the added quality of being extremely well written. It has stood the test of time. Yet, it would be interesting to bring it up to date, introducing all the latest evidence based on molecular biology and genomics.

When I contacted Heslop-Harrison’s son ‘Pat’ (who is Professor of Plant Cell Biology and Molecular Cytogenetics at the University of Leicester) to request a copy of his father’s paper (I’d ‘lost’ the copy I once had) he told me that he began writing a review 100 years of genecology, but had never completed it.

He did make this interesting comment: When I started on a ‘100 years’ update, I was taken that some parts [of ‘Forty years of genecology’] sounded remarkably old-fashioned, while other parts could fit unchanged in a strong grant application made today. But how the combination of molecular/marker studies and modelling has really allowed genecology to take its rightful place in biology.

Immersing myself in the various concepts of ‘ecotype’, ‘clines’, and ‘infraspecific variation’ among many others, Heslop-Harrison’s review not only provided me with the impetus to fulfil a pressing course assignment, but subconsciously perhaps helped me make some decisions about a future career. I guess this was the first time I became really enthusiastic about any botanical sub-discipline. Later on, when I began working in the area of conservation and use of plant genetic resources, the study of variation patterns and adaptation in crop species and their wild relatives became an important focus of what I set out to achieve. In fact, understanding the nature of crop plant variation—and how to use it—is one of the fundamental concepts underpinning the value of plant genetic resources.

No study of variation in plant species would be complete, even today I believe, without reference to the pioneering work of Clausen, Keck, and Hiesey in California over several decades from the 1930s. Their work had been highlighted, of course, in Heslop-Harrison’s review. I went back to their original papers*.

L-R: Jens Clausen (cytology and genetics), William Hiesey (physiology), and David Keck (taxonomy/botany)

And what an eye-opener they were: a classic set of papers, published between 1934 and 1958, describing experimental studies on the nature of species that really caught my attention, and to which I still return from time to time.

While others, like Turesson and Gregor, had also studied plant variation experimentally, their work was not on the same scale that Clausen and his colleagues achieved across central California, from the coast to the high Sierra Nevada.

Working with a range of species, they collected samples from different populations of each across this Californian transect and, using a reciprocal transplant approach, grew samples at experimental gardens on the coast at Stanford and at different altitudes in the mountains, at Mather and Timberline. So, for example, samples collected from coastal sites were grown at the high altitude garden, and vice versa and all combinations in between. Even the same species looked different under different environments, in terms of plant stature or days to flowering, for example, being just two of the many traits they studied. They were interested if these traits would persist when grown in another environment. Here is an example from yarrow or Achillea.

Clausen, J, DD Keck and WM Hiesey, 1948. Experimental studies on the nature of species. III: Environmental responses of climatic races of Achillea. Publication 581. Washington, D.C.: Carnegie Institution of Washington.

They studied how well plants from one environment thrived in another, identifying the adaptations that enabled them to survive, and understanding both the genetic and physiological basis for adaptation, while recognising some of the variants taxonomically, if warranted. Many were simply locally-adapted populations, or ecotypes. Just a beautiful and competent piece of science.

Anyway, come the summer of 1970 and having just graduated, I still wasn’t sure what I’d be doing or where. I’d been accepted on to the MSc course on Conservation and Utilization of Plant Genetic Resources at the University of Birmingham to begin in September. But while I had a guaranteed place, there was no funding. And without a studentship there was no way I could support myself and pay tuition fees.

That all changed at the beginning of August or thereabouts. I had a phone call from Professor Jack Hawkes, who was Mason Professor of Botany (succeeding Heslop-Harrison) and the MSc course director, letting me know he’d found some funds to support my studies. It was wonderful news, and I immediately began to make plans to move to Birmingham in mid-September.

There was one important thing Jack asked me to do: purchase a copy of a book that had just been published, and try and work my way through it before I landed up in Birmingham.

This book, Genetic Resources in Plants – their Exploration and Conservation, was more than an eye opener as far as I was concerned. It was as if the scales fell from my eyes. What a revelation!

The book was dedicated to Nikolai Ivanovich Vavilov. Until then I’d never heard of this eminent Russian geneticist, the ‘Father of Plant Genetic Resources’, who subsequently became something of a scientific hero of mine.

Edited by wheat breeder Sir Otto Frankel and FAO scientist Dr Erna Bennett, both pioneers of the 1960s genetic resources movement, this book was essential reading for anyone entering the new field of conservation and use of plant genetic resources.

Sir Otto Frankel and Erna Bennett

It emerged from a technical conference held at FAO headquarters in Rome on 18-26 September 1967, and comprised 44 chapters penned by many if not most of the leading lights then in genetic conservation and crop and forestry specialists from around the world. As Sir Otto wrote in the preface, the book attempts to define and develop the principles underlying the various stages of exploration, conservation and utilization. Its usefulness will depend on the degree to which it succeeds in illuminating practical problems, rather than offering prescriptions or instructions.

In the course of my own entry into the world of plant genetic resources, I came to meet and become friends with several of the contributors.

The six sections covered topics in: (1) Biological background (the nature of crop diversity, centers of origin, taxonomy); (2) Tactics of exploration and collection; (3) Examples of exploration (crops and forestry); (4) Evaluation and utilization; (5) Documentation, records and retrieval; and (6) Conservation.

It became something of a ‘bible’ for me, and even today, I dip into its many chapters to refresh some of my ideas. Yes, the world of conservation and use of plant genetic resources has moved on significantly since its publication 50 years ago. Just think of the remarkable advances in molecular biology and genomics that nowadays open up a whole new dimension to our understanding of variation among important crop species and their wild relatives. And the impressive progress in computing for both data analysis as well as data management for crop germplasm collections. Fifty years ago, many things that we consider routine today were then but a pipe dream, if they were even on someone’s intellectual horizon.

I really do believe that anyone contemplating a career in plant genetic conservation as I was, 50 years ago, would benefit from delving into Frankel and Bennett, not only to appreciate how the genetic resources movement started in the 1960s, but also just how we have come in the five decades since.


*These are the papers from the California group of Clausen, Keck and Hiesey:

  • Clausen J, DD Keck & WM Hiesey, 1934. Experimental taxonomy. Yearb. Carneg. Inst. 33, 173-177.
  • Clausen J, DD Keck & WM Hiesey, 1939. The concept of species based on experiment. Amer. J. Bot. 26, 103-106.
  • Clausen J, DD Keck & WM Hiesey, 1940. Experimental studies on the nature of species. I. Effect of varied environments on western North American plants. Publ. Carneg. Instn. No. 520.
  • Clausen J, DD Keck & WM Hiesey, 1945. Experimental studies on the nature of species. II. Plant evolution through amphiploidy and autoploidy, with examples from the Madiinae. Publ. Carneg. Instn. No. 564.
  • Clausen J, DD Keck, & WM Hiesey, 1948. Experimental studies on the nature of species. III. Environmental responses of climatic races of Achillea. Publ. Carneg. Instn. No. 581.
  • Clausen J & WM Hiesey, 1958. Experimental studies on the nature of species. IV. Genetic structure of ecological races. Publ. Carneg. Instn. No. 615.

 

You’ve got mail . . . maybe

Email. Something we take for granted. In these Covid-19 lockdown days, where would be without email to keep in touch with family and friends? In fact, for many, working from home without access to emails would not be an option.

And what about Facebook, Twitter, Instagram, WhatsApp, Zoom, and all the other messaging apps?

Bob Zeigler

Yet it’s not so long ago that none of us had access to any of these. How things have changed over the past 40 years, even just the last decade.

My former colleague and IRRI Director General Bob Zeigler often said that we were living through three revolutions: in telecommunications, computing, and molecular biology. It was the combination of these three that allowed scientists to collaborate world-wide in real time, using the ‘new’ computing power to handle the vast amounts of data that molecular biology was generating.

That wasn’t so . . . not so long ago.

When, in 1976, the Director General of the International Potato Center (CIP), Dr Richard Sawyer, asked me to set up a satellite research program in Costa Rica (at a regional center, CATIE, in Turrialba) the only ways we had to communicate with HQ in Lima were ‘snail mail’, telephone, or Telex. Even making a phone call was difficult. I had to book an international call to Peru at least a day ahead.

Margaret Hamilton in 1969, standing next to listings of the software she and her MIT team produced for the Apollo project.

There were no personal computers. Even hand-held calculators were a novelty. I remember one scientist at CATIE, soil scientist Warren Forsythe, proudly showing off a newfangled—and basic—electronic calculator (addition, subtraction, division, multiplication functions only) that he’d recently spent more than USD400 on (that’s about USD1800 today!). They almost give them away nowadays. There’s more processing power in your basic smartphone than took the first astronauts to the Moon.

When I was an undergraduate at the University of Southampton in the late 1960s we used either logarithmic tables (log tables) or a hand-cranked calculating machine like the one shown below. I’m not sure if I remember nowadays how to use log tables. I never did master the slide rule.

The first computer I ever saw was at a major steelworks (Ravenscraig I think it was, at Motherwell, just south of Glasgow) where my eldest brother Martin was a computer engineer. He took me along one afternoon when he had access to the computer (an ICL mainframe if memory serves me right) for routine maintenance.

He showed me how paper tapes were used to run routines. Paper tape? I can’t remember the last time I saw that.

Completing an honours ecology project for my undergraduate dissertation in 1970, I used the university’s mainframe computer to complete a type of vegetation analysis known as Association Analysis.  Ecologist Joyce Lambert was my supervisor, and she and former head of the Department of Botany, Professor Bill Williams, were pioneers in the use of computers and quantitative methods in ecology [1]. I encoded my data on punched cards, with the help of one of the graduate students, John Barr (studying for a PhD in numerical taxonomy).

When I moved to Birmingham in 1970 (to study for the one year MSc course on plant genetic resources) there was a short module on data management, taught by Brian Kershaw, a programmer in the university’s Computer Centre. He developed the computer programs to sort and collate data, and print maps, for A Computer-Mapped Flora: A Study of The County of Warwickshire [2] published in 1971, and the first of its kind. His MSc module was more about basic programming than data management per se and not, in my opinion, very helpful, or enlightening. Things changed once we had access to personal computers over a decade later.

IBM launched its first personal computer (PC) in August 1981, just a few months after I had returned to the UK and joined the faculty of the University of Birmingham. My memory is fuzzy. We must have had one of these in our lab in the Department of Plant Biology (School of Biological Sciences). I can remember that we used 5¼ inch floppy disks, but also installed an 8 inch disk reader. MS-DOS was the operating system.

It wasn’t until one of my colleagues, plant physiologist Dr Digby Idle secured a grant to purchase half a dozen Apple Macintosh computers that we had access to personal computers, mainly for teaching. They certainly revolutionized the teaching of data management to MSc students by my colleague Dr Brian Ford-Lloyd.

Staff were sometimes allowed to take a machine home for weekend. My young daughters Hannah and Philippa had great fun exploring a couple of the games (rudimentary by today’s standards) that came with each computer.

Personal computing really took off, however, once Alan Sugar released the first IBM clones under the Amstrad brand in the 1980s. I bought several machines for my lab. We were still using the university’s mainframe computer for analysis of large data sets. It wasn’t until the end of the 1980s that PCs began to have the power to carry out some of these same analyses.

I even purchased an Amstrad for home use. It had twin 5¼ inch floppy disk drives, each with a capacity of about 500 Kb if I’m not mistaken. But then I installed a 32 MB hard drive, and then we were really cooking! There was no internet of course, and no WiFi. But connected to a dot matrix printer (are they around any more?), and using a word processing package called PFS First Choice. By today’s standards it wasn’t sophisticated at all, but it was convenient for home use [3].

We even took that Amstrad to the Philippines in 1991 and used it for a couple of years. I found it at the back of a cupboard 19 years later when we were packing to return to the UK.

But I digress. Back to emails.

I don’t really remember when we started to use email in a rather simple way at the university during the 1980s. Even after I had moved to IRRI in July 1991 I had to ‘fight’ to have a PC on my desk. Again I’m not certain when email was routinely used at the institute.

But by the time I had moved from the Genetic Resources Center to become Director for Program Planning and Communications (DPPC) in May 2001, email was well established as the most convenient and regularly used method of communication among staff at IRRI, and with external collaborators and donors. In fact, as I set up the DPPC Office much of what we achieved was based on a systematic use and filing of emails in lieu of communication through hard copies.

I’m the sort of person who attends to all incoming correspondence—memos, letters, emails—more or less straight away, deciding whether to respond immediately or taking a decision to put that to one side for a response later on. At the very least, I tried to send an acknowledgment that someone’s communication has been received. Being in a senior management position, I felt it was really important to keep on top of emails and the like, because without a response, the sender might not be able to move ahead without a decision from me. Even if that meant working through 10s if not 100s of emails a day. I never liked the grass to grow beneath my feet, so to speak.

But communication by email was both a blessing and a curse as far as project management was concerned. Because emails could be sent instantaneously, more or less, it was possible to send off project reports, or even funding requests, right up to any deadline, not having to prepare several weeks ahead for ‘snail mail’ delivery.

However, the use of emails also made some donors (like USAID, for example) somewhat dysfunctional. Knowing that we would be able to send replies in by email, they would often make demands of us for information, reports, or whatever, just before their deadline, without understanding that we also needed appropriate lead time to compile and prepare the information requested. The transmission by email was just a bonus.

But there’s no doubt that how we used email in DPPC, straight to our donor contacts, greatly enhanced fund-raising capability at IRRI.

I still look forward to receiving emails from family and friends. For many years I have used Fastmail as my platform of choice, although I do keep a Gmail address as a backup. And, for most of my continuing business and utility contacts, emails are the preferred method of communication. It’s always a pleasure when an unexpected email drops into my mailbox especially from someone I haven’t heard from for some time.

Yes, I’ve got mail . . .


[1] Williams, WT and JM Lambert, 1960. Multivariate methods in plant ecology: the use of an electronic digital computer for Association-Analysis. Journal of Ecology, 48: 689-710.

[2] Cadbury, DA, JG Hawkes and RC Readett, 1971. A Computer-Mapped Flora: A Study of The County of Warwickshire. Academic Press, London and New York.

[3] After I’d published this story yesterday (4 May 2020) a friend reminded me of the word processing software we used in the 1980s: WordStar, written for the CP/M operating system. It was generally replaced by WordPerfect, a package I never got to grips with. I became really quite proficient in the use of WordStar. Who can forget all those formatting tools for bold, underlining, and italics, etc?

 

Potatoes or rice?

I graduated in July 1970 from the University of Southampton (a university on England’s south coast) with a BSc Hons degree in botany and geography. ‘Environmental botany’ actually, whatever that meant. The powers that be changed the degree title half way through my final (i.e. senior) year.

Anyway, there I was with my degree, and not sure what the future held in store. It was however the beginning of a fruitful 40 year career in international agricultural research and academia at three institutions over three continents, in a number of roles: research scientist, principal investigator (PI), program leader, teacher, and senior research manager, working primarily on potatoes (Solanum tuberosum) and rice (Oryza sativa), with diversions into some legume species such as the grasspea, an edible form of Lathyrus.

Potatoes on the lower slopes of the Irazu volcano in Costa Rica, and rice in Bhutan

I spent the 1970s in South and Central America with the International Potato Center (CIP), the 1980s at the University of Birmingham as a Lecturer in the School of Biological Sciences (Plant Biology), and almost 19 years from July 1991 (until my retirement on 30 April 2010) at the International Rice Research Institute (IRRI) in the Philippines¹.

I divided my research time during those 40 years more or less equally between potatoes and rice (not counting the legume ‘diversions’), and over a range of disciplines: biosystematics and pre-breeding, genetic conservation, crop agronomy and production, plant pathology, plant breeding, and biotechnology. I was a bit of a ‘jack-of-all-trades’, getting involved when and where needs must.

However, I haven’t been a ‘hands-on’ researcher since the late 1970s. At both Birmingham and IRRI, I had active research teams, with some working towards their MSc or PhD, others as full time researchers. You can see our research output over many years in this list of publications.

Richard Sawyer

Very early on in my career I became involved in research management at one level or another. Having completed my PhD at Birmingham in December 1975 (and just turned 27), CIP’s Director General Richard Sawyer asked me to set up a research program in Costa Rica. I moved there in April 1976 and stayed there until November 1980.


In these Covid-19 lockdown days, I’m having ample time to reflect on times past. And today, 30 April, it’s exactly 10 years since I retired.

Just recently there was a Twitter exchange between some of my friends about the focus of their research, and the species they had most enjoyed working on.

And that got me thinking. If I had to choose between potatoes and rice, which one would it be? A hard decision. Even harder, perhaps, is the role I most enjoyed (or gave me the most satisfaction) or, from another perspective, in which I felt I’d accomplished most. I’m not even going to hazard a comparison between living and working in Peru (and Costa Rica) versus the Philippines. However, Peru has the majesty of its mountain landscapes and its incredible cultural history and archaeological record (notwithstanding I’d had an ambition from a small boy to visit Peru one day). Costa Rica has its incredible natural world, a real biodiversity hotspot, especially for the brilliant bird life. And the Philippines I’ll always remember for all wonderful, smiling faces of hard-working Filipinos.

And the scuba diving, of course.

Anyway, back to potatoes and rice. Both are vitally important for world food security. The potato is, by far, the world’s most important ‘root’ crop (it’s actually a tuber, a modified underground stem), by tonnage at least, and grown worldwide. Rice is the world’s most important crop. Period! Most rice is grown and consumed in Asia. It feeds more people on a daily basis, half the world’s population, than any other staple. Nothing comes close, except wheat or maize perhaps, but much of those grains is processed into other products (bread and pasta) or fed to animals. Rice is consumed directly as the grain.


Just 24 when I joined CIP as a taxonomist in January 1973, one of my main responsibilities was to collect potato varieties in various parts of the Peruvian Andes to add to the growing germplasm collection of native varieties and wild species. I made three trips during my three years in Peru: in May 1973 to the departments of Ancash and La Libertad (with my colleague, Zósimo Huamán); in May 1974 to Cajamarca (accompanied by my driver Octavio); and in January/February 1974 to Cuyo-Cuyo in Puno and near Cuzco, with University of St Andrews lecturer, Dr Peter Gibbs.

Top: with Octavio in Cajamarca, checking potato varieties with a farmer. Bottom: ready for the field, near Cuzco.

My own biosystematics/pre-breeding PhD research on potatoes looked at the breeding relationships between cultivated forms with different chromosome numbers (multiples of 12) that don’t naturally intercross freely, as well as diversity within one form with 36 chromosomes, Solanum x chaucha. In the image below, some of that diversity is shown, as well as examples of how we made crosses (pollinations) between different varieties, using the so-called ‘cut stem method’ in bottles.

Several PhD students of mine at Birmingham studied resistance to pests and diseases in the myriad of more than 100 wild species of potato that are found from the southern USA to southern Chile. We even looked at the possibility of protoplast fusion (essentially fusion of ‘naked’ cells) between different species, but not successfully.

I developed a range of biosystematics projects when taking over leadership of the International Rice Genebank at IRRI, publishing extensively about the relationships among the handful (about 20 or so) wild rice species and cultivated rice. One of the genebank staff, Elizabeth Ma. ‘Yvette’ Naredo (pointing in the image below) completed her MS degree under my supervision.

Although this research had a ‘taxonomic’ focus in one sense (figuring out the limits of species to one another), it also had the practical focus of demonstrating how easily species might be used in plant breeding, according to their breeding relationships, based on the genepool concept of Harlan and de Wet, 1971 [1], illustrated diagrammatically below.


When I transferred to Costa Rica in 1976, I was asked to look into the possibility of growing potatoes under hot, humid conditions. At that time CIP was looking to expand potato production into areas and regions not normally associated with potato cultivation. One of the things I did learn was how to grow a crop of potatoes.

I was based in Turrialba (at the regional institute CATIE), at around 650 masl, with an average temperature of around 23°C (as high as 30°C and never much lower than about 15°C; annual rainfall averages more than 2800 mm). Although we did identify several varieties that could thrive under these conditions, particularly during the cooler months of the year, we actually faced a more insidious problem, and one that kept me busy throughout my time in Costa Rica.

Shortly after we planted the first field trials on CATIE’s experiment station, we noticed that some plants were showing signs of wilting but we didn’t know the cause.

With my research assistant Jorge Aguilar checking on wilted plants in one of the field trials.

Luis Carlos González

Fortunately, I established a very good relationship with Dr Luis Carlos González Umaña, a plant pathologist in the University of Costa Rica, who quickly identified the culprit: a bacterium then known as Pseudomonas solanacearum (now Ralstonia solanacearum) that causes the disease known as bacterial wilt.

I spent over three years looking into several ways of controlling bacterial wilt that affects potato production in many parts of the world. An account of that work was one of the first posts I published in this blog way back in 2012.

The other aspect of potato production which gave me great satisfaction is the work that my colleague and dear friend Jim Bryan and I did on rapid multiplication systems for seed potatoes.

Being a vegetatively-propagated crop, potatoes are affected by many diseases. Beginning with healthy stock is essential. The multiplication rate with potatoes is low compared to crops that reproduce through seeds, like rice and wheat. In order to bulk up varieties quickly, we developed a set of multiplication techniques that have revolutionised potato seed production systems ever since around the world.

AS CIP’s Regional Representative for Mexico, Central America, and the Caribbean (known as CIP’s Region II), I also contributed to various potato production training courses held each year in Mexico. But one of our signature achievements was the launch of a six nation research network or consortium in 1978, known as PRECODEPA (Programa REgional COoperativo DE PApa), one of the first among the CGIAR centers. It was funded by the Swiss Government.

Shortly after I left Costa Rica in November 1980, heading back to Lima (and unsure where my next posting would be) PRECODEPA was well-established, and leadership was assumed by the head of one of the national potato program members of the network. PRECODEPA expanded to include more countries in the region (in Spanish, French, and English), and was supported continually by the Swiss for more than 25 years. I have written here about how PRECODEPA was founded and what it achieved in the early years.

I resigned from CIP in March 1981 and returned to the UK, spending a decade teaching at the University of Birmingham.


Did I enjoy my time at Birmingham? I have mixed feelings.

I had quite a heavy teaching load, and took on several administrative roles, becoming Chair of the Biological Sciences Second Year Common Course (to which I contributed a module of about six lectures on agricultural ecosystems). I had no first teaching commitments whatsoever, thank goodness. I taught a second year module with my colleague Richard Lester on flowering plant taxonomy, contributing lectures about understanding species relationships through experimentation.

Brian Ford-Lloyd

With my close friend and colleague Dr Brian Ford-Lloyd (later Professor), I taught a final year module on plant genetic resources, the most enjoyable component of my undergraduate teaching.

One aspect of my undergraduate responsibilities that I really did enjoy (and took seriously, I believe—and recently confirmed by a former tutee!) was the role of personal tutor to 1st, 2nd and 3rd year students. I would meet with them about once a week to discuss their work, give advice, set assignments, and generally be a sounding board for any issues they wanted to raise with me. My door was always open.

Most of my teaching—on crop diversity and evolution, germplasm collecting, agricultural systems, among others—was a contribution to the one year (and international) MSc Course on Conservation and Utilization of Plant Genetic Resources on which I had studied a decade earlier. In my travels around the world after I joined IRRI in 1991, I would often bump into my former students, and several also contributed to a major rice biodiversity project that I managed for five years from 1995. I’m still in contact with some of those students, some of whom have found me through this blog. And I’m still in contact with two of my classmates from 1970-71.

Research on potatoes during the 1980s at Birmingham was not straightforward. On the one hand I would have liked to continue the work on wild species that had been the focus of Professor Jack Hawkes’ research over many decades.

With Jack Hawkes, collecting Solanum multidissectum in the central Andes north of Lima in early 1981 just before I left CIP to return to the UK. This was the only time I collected with Hawkes. What knowledge he had!

He had built up an important collection of wild species that he collected throughout the Americas. I was unable to attract much funding to support any research projects. It wasn’t a research council priority. Furthermore, there were restrictions on how we could grow these species, because of strict quarantine regulations. In the end I decided that the Hawkes Collection would be better housed in Scotland at the Commonwealth Potato Collection (or CPC, that had been set up after the Empire Potato Collecting Expedition in 1938-39 in which Jack participated). In 1987, the Hawkes Collection was acquired by the CPC and remains there to this day.

Dave Downing was the department technician who looked after the potato collection at Birmingham. He did a great job coaxing many different species to flower.

Having said that, one MSc student, Susan Juned, investigated morphological and enzyme diversity in the wild species Solanum chacoense. After graduating Susan joined another project on potato somaclones that was managed by myself and Brian Ford-Lloyd (see below). Another student, Ian Gubb, continued our work on the lack of enzymic blackening in Solanum hjertingii, a species from Mexico, in collaboration with the Food Research Institute in Norwich, where he grew his research materials under special quarantine licence. A couple of Peruvian students completed their degrees while working at CIP, so I had the opportunity of visiting CIP a couple of times while each was doing field work, and renew my contacts with former colleagues. In 1988, I was asked by CIP to join a panel for a three week review of a major seed production project at several locations around Peru.

With funding of the UK’s Overseas Development Administration (ODA, or whatever it was then), and now the Department for International Development (DFID), and in collaboration with the Plant Breeding Institute (PBI) in Cambridge and CIP, in 1983/84 we began an ambitious (and ultimately unsuccessful) project on true potato seed (TPS) using single seed descent (SSD) in diploid potatoes (having 24 chromosomes). Because of the potato quarantine situation at Birmingham, we established this TPS project at PBI, and over the first three years made sufficient progress for ODA to renew our grant for a second three year period.

We hit two snags, one biological, the other administrative/financial that led to us closing the project after five years. On reflection I also regret hiring the researcher we did. I’ve not had the same recruitment problem since.

Working with diploid potatoes was always going to be a challenge. They are self incompatible, meaning that the pollen from a flower ‘cannot’ fertilize the same flower. Nowadays mutant forms have been developed that overcome this incompatibility and it would be possible to undertake SSD as we envisaged. Eventually we hit a biological brick wall, and we decided the effort to pursue our goal would take more resources than we could muster. In addition, the PBI was privatized in 1987 and we had to relocate the project to Birmingham (another reason for handing over the Hawkes Collection to the CPC). We lost valuable research impetus in that move, building new facilities and the like. I think it was the right decision to pull the plug when we did, admit our lack of success, and move on.

We wrote about the philosophy and aims of this TPS project in 1984 [2], but I don’t have a copy of that publication. Later, in 1987, I wrote this review of TPS breeding [3].

Susan Juned

As I mentioned above, Brian Ford-Lloyd and I received a commercial grant to look into producing tissue-culture induced variants, or somaclones, of the crisping potato variety Record with reduced low temperature sweetening that leads to ‘blackened’ crisps (or chips in the USA) on frying. We hired Susan Juned as the researcher, and she eventually received her PhD in 1994 for this work. Since we kept the identity of each separate Record tuber from the outset of the project, over 150 tubers, and all the somaclone lines derived from each, we also showed that there were consequences for potato seed production and maintenance of healthy stocks as tissue cultures. We published that work in 1991. We also produced a few promising lines of Record for our commercial sponsor.

One funny aspect to this project is that we made it on to Page 3 of the tabloid newspaper The Sun, notorious in those days for a daily image of a well-endowed and naked young lady. Some journalist or other picked up a short research note in a university bulletin, and published an extremely short paragraph at the bottom of Page 3 (Crunch time for boffins) as if our project did not have a serious objective. In fact, I was even invited to go on the BBC breakfast show before I explained that the project had a serious objective. We weren’t just investigating ‘black bits in crisp packets’.

Brian and I (with a colleague, Martin Parry, in the Department of Geography) organized a workshop on climate change in 1989, when there was still a great deal of skepticism. We published a book in 1990 from that meeting (and followed up in 2013 with another).

Despite some successes while at Birmingham, and about to be promoted to Senior Lecturer, I had started to become disillusioned with academic life by the end of the 1980s, and began to look for new opportunities. That’s when I heard about a new position at IRRI in the Philippines: Head of the newly-established Genetic Resources Center, with responsibility for the world renowned and largest international rice genebank. I applied. The rest is history,


Klaus Lampe

I was appointed by Director General Klaus Lampe even though I’d never actually run a genebank before. Taking on a genebank as prestigious as the International Rice Genebank was rather daunting. But help was on the way.

I knew I had a good team of staff. All they needed was better direction to run a genebank efficiently, and bring the genebank’s operations up to a higher standard.

Staff of the International Rice Genebank on a visit to PhilRice in 1996.

There was hardly an aspect of the operations that we didn’t overhaul. Not that I had the genebank team on my side from the outset. It took a few months for them to appreciate that my vision for the genebank was viable. Once on board, they took ownership of and responsibility for the individual operations while I kept an overview of the genebank’s operation as a whole.

With Pola de Guzman inside the Active Collection store room at +4C. Pola was my right hand in the genebank, and I asked her to take on the role of genebank manager, a position she holds to this day.

I’ve written extensively in this blog about the genebank and genetic resources of rice, and in this post I gave an overview of what we achieved.

You can find more detailed stories of the issues we faced with data management and germplasm characterization, or seed conservation and regeneration (in collaboration with my good friend Professor Richard Ellis of the University of Reading). We also set about making sure that germplasm from around Asia (and Africa and the Americas) was safe in genebanks and duplicated in the International Rice Genebank. We embarked on an ambitious five year project (funded by the Swiss government) to collect rice varieties mainly (and some wild samples as well), thereby increasing the size of the genebank collection by more than 25% to around 100,000 samples or accessions. The work in Laos was particularly productive.

My colleague, Dr Seepana Appa Rao (left) and Lao colleagues interviewing a farmer in Khammouane Province about the rice varieties she was growing.

We did a lot of training in data management and germplasm collecting, and successfully studied how farmers manage rice varieties (for in situ or on farm conservation) in the Philippines, Vietnam, and India.

One of IRRI’s main donors is the UK government through DFID. In the early 1990s, not long after I joined IRRI, DFID launched a new initiative known as ‘Holdback’ through which some of the funding that would, under normal circumstances, have gone directly to IRRI and its sister CGIAR centers was held back to encourage collaboration between dneters and scientists in the UK.

Whenever I returned on annual home leave, I would spend some time in the lab at Birmingham. John Newbury is on the far left, Parminder Virk is third from left, and Brian Ford-Lloyd on the right (next to me). One of my GRC staff, the late Amy Juliano spent a couple of months at Birmingham learning new molecular techniques. She is on the front row, fourth from right.

With my former colleagues at the University of Birmingham (Brian Ford-Lloyd, Dr John  Newbury, and Dr Parminder Virk) and a group at the John Innes Centre in Norwich (the late Professor Mike Gale and Dr Glenn Bryan) we set about investigating how molecular markers (somewhat in their infancy back in the day) could be used describe diversity in the rice collection or identify duplicate accessions.

Not only was this successful, but we published some of the first research in plants showing the predictive value of molecular markers for quantitative traits. Dismissed at the time by some in the scientific community, the study of  associations between molecular markers and traits is now mainstream.

In January 1993, I was elected Chair while attending my first meeting of the Inter-Center Working Group on Genetic Resources (ICWG-GR) in Ethiopia (my first foray into Africa), a forum bringing expertise in genetic conservation together among the CGIAR centers.

ICWG-GR meeting held at ILCA in Addis Ababa, Ethiopia in January 1993.

Over the next three years while I was Chair, the ICWG-GR managed a review of genetic resources in the CGIAR, and a review of center genebanks. We also set up the System-Wide Genetic Resources Program, that has now become the Genebank Platform.


I never expected to remain at IRRI as long as I did, almost nineteen years. I thought maybe ten years at most, and towards the end of the 1990s I began to look around for other opportunities.

Then, in early 2001, my career took another course, and I left genetic resources behind, so to speak, and moved into senior management at IRRI as Director for Program Planning and Coordination (later Communications, DPPC). And I stayed in that role until retiring from the institute ten years ago.

Top: after our Christmas lunch together at Antonio’s restaurant in Tagaytay, one of the best in the Philippines. To my left are: Sol, Eric, Corints, Vel, and Zeny. Below: this was my last day at IRRI, with Eric, Zeny, Corints, Vel, and Yeyet (who replaced Sol in 2008).

Ron Cantrell

The Director General, Ron Cantrell, asked me to beef up IRRI’s resource mobilization and project management. IRRI’s reputation with its donors had slipped. It wasn’t reporting adequately, or on time, on the various projects funded at the institute. Furthermore, management was not sure just what projects were being funded, by which donor, for what period, and what commitments had been set at the beginning of each. What an indictment!

I wrote about how DPPC came into being in this blog post. One of the first tasks was to align information about projects across the institute, particularly with the Finance Office. It wasn’t rocket science. We just gave every project (from concept paper to completion) a unique ID that had to be used by everyone. We also developed a corporate brand for our project reporting so that any donor could immediately recognise a report from IRRI.

So we set about developing a comprehensive project management system, restoring IRRI’s reputation in less than a year, and helping to increase the annual budget to around US$60 million. We also took on a role in risk management, performance appraisal, and the development of IRRI’s Medium Term Plans and its Strategy.

Bob Zeigler

Then under Ron’s successor, Bob Zeigler, DPPC went from strength to strength. Looking back on it, I think those nine years in DPPC were the most productive and satisfying of my whole career. In that senior management role I’d finally found my niche. There’s no doubt that the success of DPPC was due to the great team I brought together, particularly Corinta who I plucked out of the research program where she was working as a soil chemist.

Around 2005, after Bob became the DG, I also took on line management responsibility for a number of support units: Communication and Publications Services (CPS), Library and Documentation Services (LDS), Information Technology Service (ITS), and the Development Office (DO). Corinta took over day-to-day management of IRRI’s project portfolio.

With my unit heads, L-R: Gene Hettel (CPS), Mila Ramos (LDS), Marco van den Berg (ITS), Duncan Macintosh (DO), and Corinta Guerta (DPPC).


So, ten years on, what memories I have to keep my mind ticking over during these quiet days. When I began this post (which has turned out much longer than I ever anticipated) my aim was to decide between potatoes and rice. Having worked my way through forty years of wonderful experiences, I find I cannot choose one over the other. There’s no doubt however that I made a greater contribution to research and development during my rice days.

Nevertheless, I can’t help thinking about my South American potato days with great affection, and knowing that, given the chance, I’d be back up in the Andes at a moment’s notice. Potatoes are part of me, in a way that rice never became.

Farmer varieties of potatoes commonly found throughout the Andes of Peru.


Everyone needs good mentors. I hope I was a good mentor to the folks who worked with me. I was fortunate to have had great mentors. I’ve already mentioned a number of the people who had an influence on my career.

I can’t finish this overview of my forty years in international agriculture and academia without mentioning five others: Joe Smartt (University of Southampton); Trevor Williams (University of Birmingham); Roger Rowe (CIP); John Niederhauser (1990 World Food Prize Laureate); and Ken Brown (CIP)

L-R: Joe Smartt, Trevor Williams, Roger Rowe, and John Niederhauser.

  • Joe, a lecturer in genetics, encouraged me to apply for the MSc Course at Birmingham in early 1970. I guess without his encouragement (and Jack Hawkes accepting me on to the course) I never would have embarked on a career in genetic conservation and international agriculture. I kept in regular touch with Joe until he passed away in 2013.
  • At Birmingham, Trevor supervised my MSc dissertation on lentils. He was an inspirational teacher who went on to become the Director General of the International Board for Plant Genetic Resources (IBPGR) in Rome. The last time I spoke with Trevor was in 2012 when he phoned me one evening to congratulate me on being awarded an OBE. He passed away in 2015.
  • Roger joined CIP in July 1973 as Head of the Breeding and Genetics Department, from the USDA Potato Collection in Wisconsin. He was my first boss in the CGIAR, and I learnt a lot from him about research and project management. We are still in touch.
  • John was an eminent plant pathologist whose work on late blight of potatoes in Mexico led to important discoveries about the pathogen and the nature of resistance in wild potato species. John and I worked closely from 1978 to set up PRECODEPA. He had one of the sharpest (and wittiest) minds I’ve come across. John passed away in 2005.
  • Ken Brown

    Ken was a fantastic person to work with—he knew just how to manage people, was very supportive, and the last thing he ever tried to do was micromanage other people’s work. I learnt a great deal about program and people management from him.


[1] Harlan, JR and JMJ de Wet, 1971. Toward a rational classification of cultivated plants. Taxon 20, 509-517.

[2] Jackson, MT. L Taylor and AJ Thomson 1985. Inbreeding and true potato seed production. In: Report of a Planning Conference on Innovative Methods for Propagating Potatoes, held at Lima, Peru, December 10-14,1984, pp. 169-79.

[3] Jackson, MT, 1987. Breeding strategies for true potato seed. In: GJ Jellis & DE Richardson (eds), The Production of New Potato Varieties: Technological Advances. Cambridge University Press, pp. 248-261.


 

Have [botany] degree . . . will travel (#iamabotanist)

One thing I had known from a young boy was that I wanted to see the world; and work overseas if possible. Following somewhat in the footsteps of my parents, Fred and Lilian Jackson.

Who would have thought that a degree in botany would open up so many opportunities?

Come 1 January, it will be 47 years since I joined the staff of the International Potato Center (CIP) in Lima, Peru, and the start of a 37 year career in the plant sciences: as a researcher, teacher, and manager. Where has the time flown?

After eight years in South and Central America, I spent a decade on the faculty of the School of Biological Sciences at the University of Birmingham. Then, in 1991, I headed to Southeast Asia, spending almost 19 years at the International Rice Research Institute (IRRI) in the Philippines, before retiring in 2010.

However, I have to admit that Lady Luck has often been on my side, because my academic career didn’t get off to an auspicious start and almost thwarted my ambitions.

While I enjoyed my BSc degree course at the University of Southampton (in environmental botany and geography) I was frankly not a very talented nor particularly industrious student. I just didn’t know how to study, and always came up short in exams. And, on reflection, I guess I burnt the candle more at one end than the other.

It would hard to underestimate just how disappointed I was, in June 1970, to learn I’d been awarded a Lower Second Class (2ii) degree, not the Upper Second (2i) that I aspired to. I could have kicked myself. Why had I not applied myself better?

But redemption was on the horizon.

Prof. Jack Hawkes

In February 1970, Professor Jack Hawkes (head of the Department of Botany at the University of Birmingham) interviewed me for a place on the MSc Course Conservation and Utilization of Plant Genetic Resources, that had opened its doors to the first cohort some months earlier. I must have made a favorable impression, because he offered me a place for September.

But how was I to support myself for the one year course, and pay the tuition  fees? I didn’t have any private means and, in 1970, the Course had not yet been recognized for designated studentships by any of the UK’s research councils.

Through the summer months I was on tenterhooks, and with the end of August approaching, started seriously to think about finding a job instead.

Then salvation arrived in the form of a phone call from Professor Hawkes, that the university had awarded me a modest studentship to cover living expenses and accommodation (about £5 a week, or equivalent to about £66 in today’s money) as well as paying the tuition fees. I could hardly believe the good news.

Prof. Trevor Williams

By the middle of September I joined four other students (from Venezuela, Pakistan, Turkey, and Nigeria) to learn all about the importance of crop plant diversity. Over the next year, discovered my academic mojo. I completed my MSc dissertation on lentils under Course Tutor (and future Director General of the International Board for Plant Genetic Resources, now Bioversity International), Professor Trevor Williams.

Starting a career in international agricultural research
Just before Christmas 1970, Hawkes traveled to Peru and Bolivia to collect wild potatoes. On his return in February 1971, he dangled the possibility of a one year position in Peru (somewhere I had always wanted to visit) to manage the potato germplasm collection at CIP while a Peruvian researcher came to Birmingham for training on the MSc Course. Then, in mid-summer, CIP’s Director General, Dr. Richard Sawyer, visited Birmingham and confirmed the position at CIP beginning in September 1971.

But things didn’t exactly go to plan. Funding from the British government’s overseas development aid budget to support my position at CIP didn’t materialise until January 1973. So, during the intervening 15 months, I began a PhD research project on potatoes (under the supervision of Professor Hawkes), continuing with that particular project as part of my overall duties once I’d joined CIP in Lima, under the co-supervision of Dr. Roger Rowe. That work took me all over the Andes—by road, on horseback, and on foot—collecting native varieties of potatoes for the CIP genebank.

Screening potatoes in Turrialba, Costa Rica for resistance to bacterial wilt.

After successfully completing my PhD in December 1975, I transferred to CIP’s Outreach Program in Central America, moved to Costa Rica for the next 4½ years, and began research on potato diseases, adaptation of potatoes to warm climates, and seed production. This was quite a change from my thesis research, but I acquired valuable experience about many different aspects of potato production. I learnt to grow a crop of potatoes!

But this posting was not just about research. After a year, my regional leader (based in Mexico) moved to the USA to pursue his PhD, and CIP asked me to take over as regional research leader. Thus I began to develop an interest in and (if I might be permitted to say) a flair for research management. In this role I traveled extensively throughout Central America and Mexico, and the Caribbean Islands, and helped to found and establish one of the most enduring and successful research partnerships between national research programs and any international agricultural research institute: PRECODEPA.

Then, just as I was thinking about a move to CIP’s regional office in the Philippines (for Southeast Asia), an entirely different opportunity opened up, and we moved back to the UK.

Back to Birmingham
In January 1981 I successfully applied for a Lectureship in my old department (now named the Department of Plant Biology) at Birmingham. I said goodbye to CIP in March 1981, and embarked on the next stage of my career: teaching botany.

The lectureship had been created to ensure continuity of teaching in various aspects of the conservation and use of plant genetic resources (and other topics) after Professor Hawkes’ retirement in September 1982. I assumed his particular teaching load, in crop plant evolution and germplasm collecting on the MSc Course, and flowering plant taxonomy to second year undergraduates, as well as developing other courses at both undergraduate and graduate level.

In addition to my continuing research interest on potatoes I assembled a large collection of Lathyrus species and one PhD student from Malaysia made an excellent study of species relationships of the one cultivated species, the grasspea, L. sativus. I successfully supervised (or co-supervised) the theses of nine other PhD students (and at least a couple of dozen MSc students) during the decade I spent at Birmingham.

I generally enjoyed the teaching and interaction with students more than research. Having struggled as an undergraduate myself, I think I could empathise with students who found themselves in the same boat, so-to-speak. I took my tutor/tutee responsibilities very seriously. In fact, I did and still believe that providing appropriate and timely tutorial advice to undergraduates was one of the more important roles I had. My door was always open for tutees to drop by, to discuss any issues in addition to the more formal meetings we had on a fortnightly basis when we’d discuss some work they had prepared for me, and I gave feedback.

While I appreciate that university staff are under increasing pressures to perform nowadays (more research, more grants, more papers) I just cannot accept that many consider their tutor responsibilities so relatively unimportant, assigning just an hour or so a week (or less) when they make themselves accessible by their tutees.

The 1980s were a turbulent time in the UK. Politics were dominated by the Tories under Margaret Thatcher. And government policies came to significantly affect the higher education sector. By the end of the decade I was feeling rather disillusioned by university life, and although I was pretty confident of promotion to Senior Lecturer, I also knew that if any other opportunity came along, I would look at it seriously.

And in September 1990 just such an opportunity did come along, in the form of an announcement that IRRI was recruiting a head for the newly-created Genetic Resources Center.

Dr. Klaus Lampe

A return to international agriculture
It was early January 1991, and I was on a delayed flight to Hong Kong on my way to the Philippines for an interview. Arriving in Los Baños around 1 am (rather than 3 pm the previous afternoon), I had just a few hours sleep before a breakfast meeting with the Director General, Dr. Klaus Lampe and his two deputies. Severely jet-lagged, I guess I more or less sleep-walked through the next three days of interviews, as well as delivering a seminar. And the outcome? IRRI offered me the position at the end of January, and I moved to the Philippines on 1 July remaining there for almost 19 years.

For the first ten years, management of the International Rice Genebank (the world’s largest collection of rice varieties and wild species) was my main priority. I have written about many aspects of running a genebank in this blog, as well as discussing the dual roles of genebank management and scientific research. So I won’t repeat that here. Making sure the rice germplasm was safe and conserved in the genebank to the highest standards were the focus of my early efforts. We looked at better ways of growing diverse varieties in the single environment of IRRI’s Experiment Station, and overhauled the genebank data management system. We also spent time studying the diversity of rice varieties and wild species, eventually using a whole array of molecular markers and, in the process, establishing excellent collaboration with former colleagues at the University of Birmingham and the John Innes Centre in Norwich, UK.

Dr. Ron Cantrell

Then, one day in early 2001, IRRI’s Director General, Dr. Ron Cantrell, called me to his office, asking me to give up genebanking and join the institute’s senior management team as Director for Program Planning and Communications. As I said earlier, I really enjoyed management, but wasn’t sure I wanted to leave research (and genetic resources) behind altogether. But after some serious soul-searching, I did move across in May 2001 and remained in that position until my retirement in April 2010.

Even in that position, my background and experience in the plant sciences was invaluable. All research project proposals for example passed through my office for review and submission to various donors for funding. I was able not only look at the feasibility of any given project in terms of its objectives and proposed outcomes within the project timeframe, I could comment on many of the specific scientific aspects and highlight any inconsistencies. Because we had a well-structured project proposal development and submission process, the quality of IRRI projects increased, as well as the number that were successfully supported. IRRI’s budget increased to new levels, and confidence in the institute’s research strategy and agenda gained increased confidence among its donors.

What a good decision I made all those years ago to study botany. I achieved that early ambition to travel all over the world (>60 countries in connection with my work) in North and South America, Europe, Africa, Asia, and Australia. But the study (and use) of plants gave me so much more. I used the knowledge and experience gained to help transform lives of some of the poorest farmers and their families, by contributing to efforts to grow better yielding crops, more resilient to climate change, and resistant to diseases.

I’m sure that a degree in botany would be the last in many people’s minds as leading to so many opportunities such as I enjoyed. Knowing that opportunities are out there is one thing. Seizing those opportunities is quite another. And I seized them with both hands. I never looked back.

I should also mention that I also ascribe some of my success to having had excellent mentors—many mentioned in this piece—throughout my career to whom I could turn for advice. Thank you!

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If you are interested, a list of my scientific output (papers, book, book chapters, conference presentations and the like) can be seen here.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Management and science – are they equally important roles for a genebank manager?

There’s an interesting article by Nicola Temple and Michael Major (science communications specialists for Scriptoria and the Crop Trust, respectively), on the Genebank Platform website, about Dr David Ellis who retired at the end of 2018 as head of the genebank at the International Potato Center (CIP) in Lima, Peru (where I began my career in international agricultural research in January 1973).

Titled David Ellis: Finding the balance between manager and scientist, the article describes David’s illustrious career, and highlights an important issue that many genebank managers face. Let me quote directly what they wrote:

David argues that genebank managers need to balance science with the management of their collections. “If you focus purely on the science, then management of the genebank suffers,” he says. “If you focus solely on being a genebank manager, then you are never viewed by your scientific peers as a research scientist and that can mean fewer opportunities for collaboration.”

His perspectives—which I fully endorse—resonated with me, and got me thinking about the time, almost 30 years ago, when I joined the International Rice Research Institute (IRRI) in the Philippines as Head of the newly-created Genetic Resources Center (GRC) with responsibility for (among other things) the internationally-important rice genebank, the International Rice Germplasm Center that, in the fullness of time, we renamed the International Rice Genebank. I was head of GRC for a decade, after which I changed roles at IRRI, and relinquishing all my genetic resources responsibilities.

A career in genetic resources
By July 1991, I’d already been working on the conservation and use of plant genetic resources for twenty years. I’d studied at the University of Birmingham under Professor Jack Hawkes and Professor Trevor Williams, and had forged a career at CIP (in Peru and Central America) for over eight years, before returning to Birmingham to join the faculty of the School of Biological Sciences (helping to train the next generation of germplasm scientists).

However, until joining IRRI, I’d never managed a genebank.

I first heard about the job at IRRI in September 1990, when a position announcement landed on my desk in the morning post. I was intrigued. Who had sent this to me? At the same time, the thought of running a genebank was rather attractive, because by 1990 I had become somewhat disillusioned with academic life.

The IRRI position represented an opportunity to return to international agricultural research that I had enjoyed during my years with CIP from 1973-1981.

As initially advertised, the Head of the Genetic Resources Center position was described merely as a service role with no assigned research responsibilities whatsoever. The Head would report directly to the Deputy Director General (International Programs)—not the DDG (Research).

On the positive side, however, the position would be equivalent to other Division Heads and Program Leaders giving the incumbent an opportunity to represent the genebank directly in institute management discussions.

Having sent in my application, I traveled to the Philippines in early January 1991 for an interview, and was offered the position three weeks later. During the interview(s), and in the subsequent negotiations to iron out the terms and conditions of my appointment, I made it a condition of accepting that I (and my future GRC staff) would have a research role. Indeed, without that commitment and support from senior management, I was not interested in the position. I can be persuasive. My viewpoint prevailed!

Learning about genebanking – on the job
Management and science are almost equally important roles. But not quite. Management and safety of any genebank collection (including making it available to users worldwide) must always be the top priority.

Dr TT Chang

Before 1991 there had been just one person—eminent rice geneticist and upland rice breeder, Dr TT Chang—as head of the genebank for about thirty years. Very quickly I realised that some important changes must be made, and the best known genebank practices and standards adopted. And that’s where I focused my efforts for the first three years of my tenure in GRC.

Initially I had to immerse myself in how the genebank was being managed, especially in terms of staffing needs and people management, and to develop a plan to make it run much more efficiently. That meant identifying and appointing staff to lead critical functions in the genebank like seed conservation, field operations (multiplication of genebank accessions and rejuvenation), characterization, or data management. Finding or assigning existing staff for the right roles.

What I did find was a highly motivated and professional staff who had never received any real guidance as to their roles, nor had they been given any specific responsibilities. As a consequence, productivity was rather low, as different members of staff overlapped in their day-to-day activities, sometimes at cross purposes.

It took me about six months to understand just how the genebank functioned, and how many operations needed to be updated. But I also had the tricky task of ‘side-lining’ the most senior of the national staff, Eves Loresto, from the line of communication to me from other staff members. She had been Dr Chang’s assistant, and nothing reached him from the staff unless it passed through her first. This was, I felt, an obvious obstacle to accomplishing the necessary changes to staff roles and productivity. Ultimately I found her an important role in leading various components of an externally-funded biodiversity project (by the Swiss government) that I couldn’t have managed on my own.

It took about three years, but we overhauled almost everything that the genebank did (and producing an important manual of genebank operations, something that all CGIAR genebanks are now expected to have). One of the key problem areas was data management, a complete nightmare, as I have described elsewhere on my blog.

We brought all field operations back on to the IRRI Experiment Station, and through investment in facilities, we were able to remodel and upgrade the genebank cold stores, the seed testing laboratory, and germplasm handling protocols for responding efficiently to requests for rice germplasm, in conjunction with the Seed Health Unit which handled all aspects of quarantine and phytosanitary certification for import and export of rice seeds.

We also made sure that the collection was fully duplicated at the USDA National Laboratory for Genetic Resources Preservation in Fort Collins, CO, an initiative that had begun under my predecessor, but needed acceleration.

By the time of the first CGIAR system-wide review of genebanks that was completed in 1994-95, IRRI’s genebank was rated as ‘a model for others to emulate‘. While IRRI did invest in the genebank (improved configuration of storage rooms, laboratories, seed drying, etc.), much of what we achieved in the genebank did not actually require much additional or even special funding. Just a realignment of the way the genebank operated. And a lot of hard work by great staff to make the necessary improvements. I can’t stress too much how important it was to have the staff onside, and spending much effort in people management, including having more than 70% of all positions in GRC upgraded and staff promoted.

You can see much of how the genebank operates in this video below. And while it’s true that my successor, Dr Ruaraidh Sackville Hamilton built on the improvements made during the 1990s, we achieved the current genebank standards, and this permitted IRRI to move to the next level and meet its obligations and performance targets under the current funding structure of the Genebank Platform.

As the staff grew into their roles in the genebank, there was more opportunity to reach out to national rice programs around Asia, as well in Africa and Latin America. We helped train a large cadre of national scientists in genebank data management and, to accompany germplasm collecting, we offered practical workshops. National programs then shared collected germplasm with IRRI, and the size of the International Rice Genebank Collection grew by about 25% between 1995 and 2000. Overall, there were 48 courses in 14 countries. For details, see the project final report.

Turning to research
In July 1991, GRC had essentially no research profile whatsoever. Just a few minor studies, tinkering around the edges of research. From 1994 or thereabouts, that all changed. We invested time, people, and funds to:

  • Study the effects of seed production environment and seed quality and survival in storage;
  • Understand the diversity of rice using molecular markers;
  • Clarify the taxonomy of rice species, primarily those most closely related to Oryza sativa, the rice grown widely around the world; and
  • Understand the dynamics of rice conservation by farmers from the joint perspectives of population genetics and social anthropology.

Because we started from such a low base, I decided to forge important collaborations with several research groups to kick-start our research efforts.

Dr Kameswara Rao

In terms of seed production (and seed conservation), we had an excellent collaboration with Professor Richard Ellis at the University of Reading in the UK. We also hired a postdoc, Dr Kameswara Rao (from ICRISAT in Hyderabad, India) to work at IRRI on these joint projects. Kameswara had completed his PhD at Reading under the supervision of Professor Eric Roberts. After leaving IRRI, Kameswara joined the genebank program at the International Center for Biosaline Agriculture in Dubai, UAE; he has since retired.

Dr Parminder Virk

The use of molecular markers to study crop diversity was in its infancy in the early 1990s, although as I pointed out in a recent blog post, a number of molecular approaches had been used during the 1980s and earlier in different labs. We partnered with my former colleagues at the University of Birmingham, Professors Brian Ford-Lloyd and John Newbury (now retired) and Dr Parminder Virk (who eventually joined IRRI as a rice breeder and is now with the HarvestPlus program in India), in collaboration with the late Professor Mike Gale’s group at the John Innes Centre in Norwich.

These were highly effective collaborations, and we also built up our in-house capacity by sending one of the GRC staff for short-term training at Birmingham (sponsored by the British Council) while developing a molecular marker laboratory in GRC.

We undertook all taxonomy research in-house, and hired Dr Lu Bao-Rong from China to lead this effort. We also assigned two staff full-time to the molecular and taxonomy research, and support staff as well.

The on-farm conservation research was one component of the Swiss-funded biodiversity project I referred to earlier. One scientist, Dr Jean-Louis Pham came to IRRI from the French public research institution IRD in Montpellier to head the on-farm group.

I think we accomplished a great deal in the decade I was in charge of the International Rice Genebank. We established a solid foundation to take the genebank forward over the next two decades. I have listed below most of the GRC publications that appeared during this period. Links to PDF files of many of the papers can be found here.

The molecular marker and genomics research was strengthened in 2001 (as I was coming to the end of my tenure in GRC) with the appointment of Dr Ken McNally.

Dr Ken McNally and Dr Fiona Hay

Around 2002 a seed physiologist, Dr Fiona Hay, joined GRC and although she has now moved to Aarhus University in Denmark, her research on seed drying and storage contributed significantly towards safeguarding this valuable germplasm collection.

Looking back on the 1990s, I think GRC can be proud of its research output. We did, as David Ellis proposed, establish our scientific credibility and, in a number of forums, took that message out to the wider scientific community and the public at large. Always, however, knowing that the genebank collection was safe for the long term, and available and accessible to everyone around the world who had need of germplasm to improve rice—which is, after all, the world’s most important staple crop.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Genebank management (papers in peer-reviewed journals are shown in red, book chapter in blue)
Alcantara, A.P., E.B. Guevarra & M.T. Jackson, 1999. The International Rice Genebank Collection Information System. Poster presented at the annual meeting of the Crop Science Society of America, Salt Lake City, October 31-November 4, 1999.

Ford-Lloyd, B.V., M.T. Jackson & H.J. Newbury, 1997. Molecular markers and the management of genetic resources in seed genebanks: a case study of rice. In: J.A. Callow, B.V. Ford-Lloyd & H.J. Newbury (eds.), Biotechnology and Plant Genetic Resources: Conservation and Use. CAB International, Wallingford, pp. 103-118. 

Hunt, E.D., M.T. Jackson, M. Oliva & A. Alcantara, 1993. Employing geographical information systems (GIS) for conserving and using rice germplasm. Poster presented at the 17th International Congress of Genetics, Birmingham, U.K., August 15-21, 1993. Volume of abstracts, 117.

Jackson, M.T. & G.C. Loresto, 1996. The role of the International Rice Research Institute (IRRI) in supporting national and regional programs. Invited paper presented at the Asia-Pacific Consultation Meeting on Plant Genetic Resources, held in New Delhi, India, November 27-29, 1996.

Jackson, M.T. & R.D. Huggan, 1993. Sharing the diversity of rice to feed the world. Diversity 9, 22-25.

Jackson, M.T. & R.D. Huggan, 1996. Pflanzenvielfalt als Grundlage der Welternährung. Bulletin—das magazin der Schweizerische Kreditanstalt SKA. March/April 1996, 9-10.

Jackson, M.T. & R.J.L. Lettington, 2003. Conservation and use of rice germplasm: an evolving paradigm under the International Treaty on Plant Genetic Resources for Food and Agriculture. In: Sustainable rice production for food security. Proceedings of the 20th Session of the International Rice Commission. Bangkok, Thailand, 23-26 July 2002.
http://www.fao.org/DOCREP/006/Y4751E/y4751e07.htm#bm07. Invited paper. 

Jackson, M.T., 1993. Biotechnology and the conservation and use of plant genetic resources. Invited paper presented at the Workshop on Biotechnology in Developing Countries, held at the 17th International Congress of Genetics, Birmingham, U.K., August 15-21, 1993.

Jackson, M.T., 1994. Care for and use of biodiversity in rice. Invited paper presented at the Symposium on Food Security in Asia, held at the Royal Society, London, November 1, 1994.

Jackson, M.T., 1994. Ex situ conservation of plant genetic resources, with special reference to rice. In: G. Prain & C. Bagalanon (eds.), Local Knowledge, Global Science and Plant Genetic Resources: towards a partnership. Proceedings of the International Workshop on Genetic Resources, UPWARD, Los Baños, Philippines, pp. 11-22.

Jackson, M.T., 1994. Preservation of rice strains. Nature 371, 470.

Jackson, M.T., 1995. Protecting the heritage of rice biodiversity. GeoJournal 35, 267-274. 

Jackson, M.T., 1995. The international crop germplasm collections: seeds in the bank! Invited paper presented at the meeting Economic and Policy Research for Genetic Resources Conservation and Use: a Technical Consultation, held at IFPRI, Washington, D.C., June 21-22, 1995

Jackson, M.T., 1996. Intellectual property rights—the approach of the International Rice Research Institute. Invited paper presented at the Satellite Symposium on Biotechnology and Biodiversity: Scientific and Ethical Issues, held in New Delhi, India, November 15-16, 1996.

Jackson, M.T., 1997. Conservation of rice genetic resources—the role of the International Rice Genebank at IRRI. Plant Molecular Biology 35, 61-67. 

Jackson, M.T., 1998. Intellectual property rights—the approach of the International Rice Research Institute. Invited paper at the Seminar-Workshop on Plant Patents in Asia Pacific, organized by the Asia & Pacific Seed Association (APSA), held in Manila, Philippines, September 21-22, 1998.

Jackson, M.T., 1998. Recent developments in IPR that have implications for the CGIAR. Invited paper presented at the ICLARM Science Day, International Center for Living Aquatic Resources Management, Manila, Philippines, September 30, 1998.

Jackson, M.T., 1998. The role of the CGIAR’s System-wide Genetic Resources Programme (SGRP) in implementing the GPA. Invited paper presented at the Regional Meeting for Asia and the Pacific to facilitate and promote the implementation of the Global Plan of Action for the Conservation and Sustainable Use of Plant Genetic Resources for Food and Agriculture, held in Manila, Philippines, December 15-18, 1998.

Jackson, M.T., 1999. Managing genetic resources and biotechnology at IRRI’s rice genebank. In: J.I. Cohen (ed.), Managing Agricultural Biotechnology – Addressing Research Program and Policy Implications. International Service for National Agricultural Research (ISNAR), The Hague, Netherlands and CAB International, UK, pp. 102-109. 

Jackson, M.T., 1999. Managing the world’s largest collection of rice genetic resources. In: J.N. Rutger, J.F. Robinson & R.H. Dilday (eds.), Proceedings of the International Symposium on Rice Germplasm Evaluation and Enhancement, held at the Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, USA, August 30-September 2, 1998. Arkansas Agricultural Experiment Station Special Report 195.

Jackson, M.T., 2004. Achieving the UN Millennium Development Goals begins with rice research. Invited paper presented to the Cross Party International Development Group of the Scottish Parliament, Edinburgh, Scotland, June 2, 2004.

Jackson, M.T., A. Alcantara, E. Guevarra, M. Oliva, M. van den Berg, S. Erguiza, R. Gallego & M. Estor, 1995. Documentation and data management for rice genetic resources at IRRI. Paper presented at the Planning Meeting for the System-wide Information Network for Genetic Resources (SINGER), held at CIMMYT, Mexico, October 2-6, 1995.

Jackson, M.T., B.R. Lu, G.C. Loresto & F. de Guzman, 1995. The conservation of rice genetic resources at the International Rice Research Institute. Paper presented at the International Symposium on Research and Utilization of Crop Germplasm Resources held in Beijing, People’s Republic of China, June 1-3, 1995.

Jackson, M.T., F.C. de Guzman, R.A. Reaño, M.S.R. Almazan, A.P. Alcantara & E.B. Guevarra, 1999. Managing the world’s largest collection of rice genetic resources. Poster presented at the annual meeting of the Crop Science Society of America, Salt Lake City, October 31-November 4, 1999.

Jackson, M.T., G.C. Loresto & A.P. Alcantara, 1993. The International Rice Germplasm Center at IRRI. In: The Egyptian Society of Plant Breeding (1993). Crop Genetic Resources in Egypt: Present Status and Future Prospects. Papers of an ESPB Workshop, Giza, Egypt, March 2-3, 1992.

Jackson, M.T., G.C. Loresto & F. de Guzman, 1996. Partnership for genetic conservation and use: the International Rice Genebank at the International Rice Research Institute (IRRI). Poster presented at the Beltsville Symposium XXI on Global Genetic Resources—Access, Ownership, and Intellectual Property Rights, held in Beltsville, Maryland, May 19-22, 1996.

Jackson, M.T., G.C. Loresto, S. Appa Rao, M. Jones, E. Guimaraes & N.Q. Ng, 1997. Rice. In: D. Fuccillo, L. Sears & P. Stapleton (eds.), Biodiversity in Trust: Conservation and Use of Plant Genetic Resources in CGIAR Centres. Cambridge University Press, pp. 273-291. 

Jackson, M.T., J.L. Pham, H.J. Newbury, B.V. Ford-Lloyd & P.S. Virk, 1999. A core collection for rice—needs, opportunities and constraints. In: R.C. Johnson & T. Hodgkin (eds.), Core collections for today and tomorrow. International Plant Genetic Resources Institute, Rome, Italy, pp. 18-27.

Koo, B., P.G. Pardey & M.T. Jackson, 2004. IRRI Genebank. In: B. Koo, P.G. Pardey, B.D. Wright and others, Saving Seeds – The Economics of Conserving Crop Genetic Resources Ex Situ in the Future Harvest Centres of the CGIAR. CABI Publishing, Wallingford, pp. 89-103. 

Loresto, G.C. & M.T. Jackson, 1992. Rice germplasm conservation: a program of international collaboration. In: F. Cuevas-Pérez (ed.), Rice in Latin America: Improvement, Management, and Marketing. Proceedings of the VIII international rice conference for Latin America and the Caribbean, held in Villahermosa, Tabasco, Mexico, November 10-16, 1991. Centro Internacional de Agricultura Tropical, Cali, Colombia, pp. 61-65.

Loresto, G.C. & M.T. Jackson, 1996. South Asia partnerships forged to conserve rice genetic resources. Diversity 12, 60-61.

Loresto, G.C., E. Guevarra & M.T. Jackson, 2000. Use of conserved rice germplasm. Plant Genetic Resources Newsletter 124, 51-56. 

Lu, B.R., A. Juliano, E. Naredo & M.T. Jackson, 1995. The conservation and study of wild Oryza species at the International Rice Research Institute. Paper presented at the International Symposium on Research and Utilization of Crop Germplasm Resources held in Beijing, People’s Republic of China, June 1-3, 1995.

Newbury, H.J., B.V. Ford-Lloyd, P.S. Virk, M.T. Jackson, M.D. Gale & J.-H. Zhu, 1996. Molecular markers and their use in organising plant germplasm collections. In: E.M. Young (ed.), Plant Sciences Research Programme Conference on Semi-Arid Systems. Proceedings of an ODA Plant Sciences Research Programme Conference , Manchester, UK, September 5-6, 1995, pp. 24-25.

Vaughan, D.A. & M.T. Jackson, 1995. The core as a guide to the whole collection. In: T. Hodgkin, A.H.D. Brown, Th.J.L. van Hintum & E.A.V. Morales (eds.), Core Collections of Plant Genetic Resources. John Wiley & Sons, Chichester, pp. 229-239. 

Germplasm collection
Appa Rao, S., C. Bounphanousay, J.M. Schiller & M.T. Jackson, 2002. Collection, classification, and conservation of cultivated and wild rices of the Lao PDR. Genetic Resources and Crop Evolution 49, 75-81. 

Appa Rao, S., C. Bounphanousay, K. Kanyavong, B. Sengthong, J.M. Schiller & M.T. Jackson, 1999. Collection and classification of Lao rice germplasm, Part 4. Collection Period: September to December 1998. Internal report of the National Agricultural Research Center, National Agriculture and Forestry Research Institute, Ministry of Agriculture and Forestry, Vientiane, Lao PDR, and Genetic Resources Center, International Rice Research Institute (IRRI), Los Baños, Philippines.

Appa Rao, S., C. Bounphanousay, K. Kanyavong, V. Phetpaseuth, B. Sengthong, J.M. Schiller, S. Thirasack & M.T. Jackson, 1997. Collection and classification of rice germplasm from the Lao PDR. Part 2. Northern, Southern and Central Regions. Internal report of the National Agricultural Research Center, Department of Agriculture and Extension, Ministry of Agriculture and Forestry, Vientiane, Lao PDR, and Genetic Resources Center, International Rice Research Institute (IRRI), Los Baños, Philippines.

Appa Rao, S., C. Bounphanousay, V. Phetpaseuth, K. Kanyavong, B. Sengthong, J. M. Schiller, V. Phannourath & M.T. Jackson, 1996. Collection and classification of rice germplasm from the Lao PDR. Part 1. Southern and Central Regions – 1995. Internal report of the National Agricultural Research Center, Dept. of Agriculture and Extension, Ministry of Agriculture and Forestry, Vientiane, Lao PDR, and Genetic Resources Center, International Rice Research Institute (IRRI), Los Baños, Philippines.

Appa Rao, S., C. Bounphanousay, V. Phetpaseuth, K. Kanyavong, B. Sengthong, J.M. Schiller & M.T. Jackson, 1998. Collection and Classification of Lao Rice Germplasm Part 3. Collecting Period – October 1997 to February 1998. Internal report of the National Agricultural Research Center, National Agriculture and Forestry Research Institute, Ministry of Agriculture and Forestry, Vientiane, Lao PDR, and Genetic Resources Center, International Rice Research Institute (IRRI), Los Baños, Philippines.

Appa Rao, S., C. Bounphanouxay, J.M. Schiller & M.T. Jackson, 1999. Collecting Rice Genetic Resources in the Lao PDR. Poster presented at the annual meeting of the Crop Science Society of America, Salt Lake City, October 31-November 4, 1999.

Appa Rao, S., C. Bounphanouxay, V. Phetpaseut, J.M. Schiller, V. Phannourath & M.T. Jackson, 1997. Collection and preservation of rice germplasm from southern and central regions of the Lao PDR. Lao Journal of Agriculture and Forestry 1, 43-56. 

Dao The Tuan, Nguyen Dang Khoi, Luu Ngoc Trinh, Nguyen Phung Ha, Nguyen Vu Trong, D.A. Vaughan & M.T. Jackson, 1995. INSA-IRRI collaboration on wild rice collection in Vietnam. In: G.L. Denning & Vo-Tong Xuan (eds.), Vietnam and IRRI: A partnership in rice research. International Rice Research Institute, Los Baños, Philippines, and Ministry of Agriculture and Food Industry, Hanoi, Vietnam, pp. 85-88.

Jackson, M.T., 2001. Collecting plant genetic resources: partnership or biopiracy. Invited paper presented at the annual meeting of the Crop Science Society of America, Charlotte, North Carolina, October 21-24, 2001.

Kiambi, D.K., B.V. Ford-Lloyd, M.T. Jackson, L. Guarino, N. Maxted & H.J. Newbury, 2005. Collection of wild rice (Oryza L.) in east and southern Africa in response to genetic erosion. Plant Genetic Resources Newsletter 142, 10-20. 

Seed conservation and regeneration
Ellis, R.H. & M.T. Jackson, 1995. Accession regeneration in genebanks: seed production environment and the potential longevity of seed accessions. Plant Genetic Resources Newsletter 102, 26-28. 

Ellis, R.H., T.D. Hong & M.T. Jackson, 1993. Seed production environment, time of harvest, and the potential longevity of seeds of three cultivars of rice (Oryza sativa L.). Annals of Botany 72, 583-590. 

Kameswara Rao, N. & M.T. Jackson, 1995. Seed production strategies for conservation of rice genetic resources. Poster presented at the Fifth International Workshop on Seeds, University of Reading, September 11-15, 1995.

Kameswara Rao, N. & M.T. Jackson, 1996. Effect of sowing date and harvest time on longevity of rice seeds. Seed Science Research 7, 13-20. 

Kameswara Rao, N. & M.T. Jackson, 1996. Seed longevity of rice cultivars and strategies for their conservation in genebanks. Annals of Botany 77, 251-260. 

Kameswara Rao, N. & M.T. Jackson, 1996. Seed production environment and storage longevity of japonica rices (Oryza sativa L.). Seed Science Research 6, 17-21. 

Kameswara Rao, N. & M.T. Jackson, 1997. Variation in seed longevity of rice cultivars belonging to different isozyme groups. Genetic Resources and Crop Evolution 44, 159-164. 

Naredo, M.E.B., A.B. Juliano, B.R. Lu, F. de Guzman & M.T. Jackson, 1998. Responses to seed dormancy-breaking treatments in rice species (Oryza L.). Seed Science and Technology 26, 675-689. 

Reaño, R., M.T. Jackson, F. de Guzman, S. Almazan & G.C. Loresto, 1995. The multiplication and regeneration of rice germplasm at the International Rice Genebank, IRRI. Paper presented at the Discussion Meeting on Regeneration Standards, held at ICRISAT, Hyderabad, India, December 4-7, 1995, sponsored by IPGRI, ICRISAT and FAO.

On-farm conservation
Appa Rao, S., J.M. Schiller, C. Bounphanousay & M.T. Jackson, 2006. Development of traditional rice varieties and on-farm management of varietal diversity in Laos. In: J.M. Schiller, M.B. Chanphengxay, B. Linquist & S. Appa Rao (eds.), Rice in Laos. Los Baños (Philippines): International Rice Research Institute, pp. 187-196. 

Bellon, M.R., J.L. Pham & M.T. Jackson, 1997. Genetic conservation: a role for rice farmers. In: N. Maxted, B.V. Ford-Lloyd & J.G. Hawkes (eds.), Plant Genetic Conservation: the In Situ Approach. Chapman & Hall, London, pp. 263-289. 

Jackson, M.T., 2001. Rice: diversity and livelihood for farmers in Asia. Invited paper presented in the symposium Cultural Heritage and Biodiversity, at the annual meeting of the Crop Science Society of America, Charlotte, North Carolina, October 21-24, 2001.

Morin, S.R., J.L. Pham, M. Calibo, G. Abrigo, D. Erasga, M. Garcia, & M.T. Jackson, 1998. On farm conservation research: assessing rice diversity and indigenous technical knowledge. Invited paper presented at the Workshop on Participatory Plant Breeding, held in New Delhi, March 23-24, 1998.

Morin, S.R., J.L. Pham, M. Calibo, M. Garcia & M.T. Jackson, 1998. Catastrophes and genetic diversity: creating a model of interaction between genebanks and farmers. Paper presented at the FAO meeting on the Global Plan of Action on Plant Genetic Resources for Food and Agriculture for the Asia-Pacific Region, held in Manila, Philippines, December 15-18, 1998.

Pham J.L., S.R. Morin & M.T. Jackson, 2000. Linking genebanks and participatory conservation and management. Invited paper presented at the International Symposium on The Scientific Basis of Participatory Plant Breeding and Conservation of Genetic Resources, held at Oaxtepec, Morelos, Mexico, October 9-12, 2000.

Pham, J.L., M.R. Bellon & M.T. Jackson, 1995. A research program on on-farm conservation of rice genetic resources. Poster presented at the Third International Rice Genetics Symposium, Manila, Philippines, October 16-20, 1995.

Pham, J.L., M.R. Bellon & M.T. Jackson, 1996. A research program for on-farm conservation of rice genetic resources. International Rice Research Notes 21, 10-11.

Pham, J.L., M.R. Bellon & M.T. Jackson, 1996. What is on-farm conservation research on rice genetic resources? In: J.T. Williams, C.H. Lamoureux & S.D. Sastrapradja (eds.), South East Asian Plant Genetic Resources. Proceedings of the Third South East Asian Regional Symposium on Genetic Resources, Serpong, Indonesia, August 22-24, 1995, pp. 54-65.

Pham, J.L., S.R. Morin, L.S. Sebastian, G.A. Abrigo, M.A. Calibo, S.M. Quilloy, L. Hipolito & M.T. Jackson, 2002. Rice, farmers and genebanks: a case study in the Cagayan Valley, Philippines. In: J.M.M. Engels, V.R. Rao, A.H.D. Brown & M.T. Jackson (eds.), Managing Plant Genetic Diversity. CAB International, Wallingford, pp. 149-160. 

Taxonomy of rice species
Aggarwal, R.K., D.S. Brar, G.S. Khush & M.T. Jackson, 1996. Oryza schlechteri Pilger has a distinct genome based on molecular analysis. Rice Genetics Newsletter 13, 58-59.

Juliano, A.B., M.E.B. Naredo & M.T. Jackson, 1998. Taxonomic status of Oryza glumaepatula Steud. I. Comparative morphological studies of New World diploids and Asian AA genome species. Genetic Resources and Crop Evolution 45, 197-203. 

Juliano, A.B., M.E.B. Naredo, B.R. Lu & M.T. Jackson, 2005. Genetic differentiation in Oryza meridionalis Ng based on molecular and crossability analyses. Genetic Resources and Crop Evolution 52, 435-445. 

Lu, B.R., M.E. Naredo, A.B. Juliano & M.T. Jackson, 1998. Biosystematic studies of the AA genome Oryza species (Poaceae). Poster presented at the Second International Conference on the Comparative Biology of the Monocotyledons and Third International Symposium on Grass Systematics and Evolution, Sydney, Australia, September 27-October 2, 1998.

Lu, B.R., M.E.B. Naredo, A.B. Juliano & M.T. Jackson, 1997. Hybridization of AA genome rice species from Asia and Australia. II. Meiotic analysis of Oryza meridionalis and its hybrids. Genetic Resources and Crop Evolution 44, 25-31. 

Lu, B.R., M.E.B. Naredo, A.B. Juliano & M.T. Jackson, 1998. Taxonomic status of Oryza glumaepatula Steud. III. Assessment of genomic affinity among AA genome species from the New World, Asia, and Australia. Genetic Resources and Crop Evolution 45, 215-223. 

Lu, B.R., M.E.B. Naredo, A.B. Juliano & M.T. Jackson, 2000. Preliminary studies on the taxonomy and biosystematics of the AA genome Oryza species (Poaceae). In: S.W.L. Jacobs & J. Everett (eds.), Grasses: Systematics and Evolution. CSIRO: Melbourne, pp. 51-58. 

Naredo, M.E., A.B. Juliano, M.S. Almazan, B.R. Lu & M.T. Jackson, 2000. Morphological and molecular diversity of AA genome species of rice. Poster presented at the annual meeting of the Crop Science Society of America, Minneapolis, November 5-9, 2000.

Naredo, M.E.B., A.B. Juliano, B.R. Lu & M.T. Jackson, 1997. Hybridization of AA genome rice species from Asia and Australia. I. Crosses and development of hybrids. Genetic Resources and Crop Evolution 44, 17-23. 

Naredo, M.E.B., A.B. Juliano, B.R. Lu & M.T. Jackson, 1998. Taxonomic status of Oryza glumaepatula Steud. II. Hybridization between New World diploids and AA genome species from Asia and Australia. Genetic Resources and Crop Evolution 45, 205-214. 

Naredo, M.E.B., A.B. Juliano, B.R. Lu & M.T. Jackson, 2003. The taxonomic status of the wild rice species Oryza ridleyi Hook. f. and O. longiglumis Jansen (Ser. Ridleyanae Sharma et Shastry) from Southeast Asia. Genetic Resources and Crop Evolution. Genetic Resources and Crop Evolution 50, 477-488. 

Rao, S.A, M.T. Jackson, V Phetpaseuth & C. Bounphanousay, 1997. Spontaneous interspecific hybrids in Oryza in the Lao PDR. International Rice Research Notes 22, 4-5.

The diversity of rice
Appa Rao, S., C. Bounphanousay, J.M. Schiller & M.T. Jackson, 2002. Naming of traditional rice varieties by farmers in the Lao PDR. Genetic Resources and Crop Evolution 49, 83-88. 

Appa Rao, S., C. Bounphanousay, J.M. Schiller, M.T. Jackson, P. Inthapanya & K. Douangsila. 2006. The aromatic rice of Laos. In: J.M. Schiller, M.B. Chanphengxay, B. Linquist & S. Appa Rao (eds.), Rice in Laos. Los Baños (Philippines): International Rice Research Institute, pp. 159-174. 

Appa Rao, S., J.M. Schiller, C. Bounphanousay & M.T. Jackson. 2006. Diversity within the traditional rice varieties of Laos. In: J.M. Schiller, M.B. Chanphengxay, B. Linquist & S. Appa Rao (eds.), Rice in Laos. Los Baños (Philippines): International Rice Research Institute, pp. 123-140. 

Appa Rao, S., J.M. Schiller, C. Bounphanousay, A.P. Alcantara & M.T. Jackson. 2006. Naming of traditional rice varieties by the farmers of Laos. In: J.M. Schiller, M.B. Chanphengxay, B. Linquist & S. Appa Rao (eds.), Rice in Laos. Los Baños (Philippines): International Rice Research Institute, pp. 141-158. 

Appa Rao, S., J.M. Schiller, C. Bounphanousay, P. Inthapanya & M.T. Jackson. 2006. The colored pericarp (black) rice of Laos. In: J.M. Schiller, M.B. Chanphengxay, B. Linquist & S. Appa Rao (eds.), Rice in Laos. Los Baños (Philippines): International Rice Research Institute, pp. 175-186. 

Cabanilla, V.R., M.T. Jackson & T.R. Hargrove, 1993. Tracing the ancestry of rice varieties. Poster presented at the 17th International Congress of Genetics, Birmingham, U.K., August 15-21, 1993. Volume of abstracts, 112-113.

Cohen, M.B., M.T. Jackson, B.R. Lu, S.R. Morin, A.M. Mortimer, J.L. Pham & L.J. Wade, 1999. Predicting the environmental impact of transgene outcrossing to wild and weedy rices in Asia. In: 1999 PCPC Symposium Proceedings No. 72: Gene flow and agriculture: relevance for transgenic crops. Proceedings of a Symposium held at the University of Keele, Staffordshire, U.K., April 12-14, 1999. pp. 151-157.

Ford-Lloyd, B.V., D. Brar, G.S. Khush, M.T. Jackson & P.S. Virk, 2008. Genetic erosion over time of rice landrace agrobiodiversity. Plant Genetic Resources: Characterization and Utilization 7(2), 163-168. 

Ford-Lloyd, B.V., H.J. Newbury, M.T. Jackson & P.S. Virk, 2001. Genetic basis for co-adaptive gene complexes in rice (Oryza sativa L.) landraces. Heredity 87, 530-536. 

Jackson, M.T., 1998. The genetics of genetic conservation. Invited paper presented at the Fifth National Genetics Symposium, held at PhilRice, Nueva Ecija, Philippines, December 10-12, 1998.

Jackson, M.T., B.R. Lu, M.S. Almazan, M.E. Naredo & A.B. Juliano, 2000. The wild species of rice: conservation and value for rice improvement. Poster presented at the annual meeting of the Crop Science Society of America, Minneapolis, November 5-9, 2000.

Jackson, M.T., E.L. Javier & C.G. McLaren, 1999. Rice genetic resources for food security. Invited paper at the IRRI Symposium, held at the annual meeting of the Crop Science Society of America, Salt Lake City, October 31-November 4, 1999.

Jackson, M.T., E.L. Javier & C.G. McLaren, 2000. Rice genetic resources for food security: four decades of sharing and use. In: W.G. Padolina (ed.), Plant Variety Protection for Rice in Developing Countries. Limited proceedings of the workshop on the Impact of Sui Generis Approaches to Plant Variety Protection in Developing Countries. February 16-18, 2000, IRRI, Los Baños, Philippines. International Rice Research Institute, Makati City, Philippines. pp. 3-8.

Martin, C., A. Juliano, H.J. Newbury, B.R. Lu, M.T. Jackson & B.V. Ford-Lloyd, 1997. The use of RAPD markers to facilitate the identification of Oryza species within a germplasm collection. Genetic Resources and Crop Evolution 44, 175-183. 

Newbury, H.J., P. Virk, M.T. Jackson, G. Bryan, M. Gale & B.V. Ford-Lloyd, 1993. Molecular markers and the analysis of diversity in rice. Poster presented at the 17th International Congress of Genetics, Birmingham, U.K., August 15-21, 1993. Volume of abstracts, 121-122.

Parsons, B., H.J. Newbury, M.T. Jackson & B.V. Ford-Lloyd, 1999. The genetic structure and conservation of aus, aman and boro rices from Bangladesh. Genetic Resources and Crop Evolution 46, 587-598. 

Parsons, B.J., B.V. Ford-Lloyd, H.J. Newbury & M.T. Jackson, 1994. Use of PCR-based markers to assess genetic diversity in rice landraces from Bhutan and Bangladesh. Poster presented at the Annual Meeting of the British Ecological Society, held at The University of Birmingham, December 1994.

Parsons, B.J., H.J. Newbury, M.T. Jackson & B.V. Ford-Lloyd, 1997. Contrasting genetic diversity relationships are revealed in rice (Oryza sativa L.) using different marker types. Molecular Breeding 3, 115-125. 

Virk, P., B.V. Ford-Lloyd, M.T. Jackson & H.J. Newbury, 1994. The use of RAPD analysis for assessing diversity within rice germplasm. Paper presented at the Annual Meeting of the British Ecological Society, held at The University of Birmingham, December 1994.

Virk, P.S., B.V. Ford-Lloyd, M.T. Jackson & H.J. Newbury, 1995. Use of RAPD for the study of diversity within plant germplasm collections. Heredity 74, 170-179. 

Virk, P.S., B.V. Ford-Lloyd, M.T. Jackson, H.S. Pooni, T.P. Clemeno & H.J. Newbury, 1996. Marker-assisted prediction of agronomic traits using diverse rice germplasm. In: International Rice Research Institute, Rice Genetics III. Proceedings of the Third International Rice Genetics Symposium, Manila, Philippines, October 16-20, 1995, pp. 307-316.

Virk, P.S., B.V. Ford-Lloyd, M.T. Jackson, H.S. Pooni, T.P. Clemeno & H.J. Newbury, 1996. Predicting quantitative variation within rice using molecular markers. Heredity 76, 296-304. 

Virk, P.S., H.J. Newbury, M.T. Jackson & B.V. Ford-Lloyd, 1995. The identification of duplicate accessions within a rice germplasm collection using RAPD analysis. Theoretical and Applied Genetics 90, 1049-1055. 

Virk, P.S., H.J. Newbury, M.T. Jackson & B.V. Ford-Lloyd, 2000. Are mapped markers more useful for assessing genetic diversity? Theoretical and Applied Genetics 100, 607-613. 

Virk, P.S., H.J. Newbury, Y. Shen, M.T. Jackson & B.V. Ford-Lloyd, 1996. Prediction of agronomic traits in diverse germplasm of rice and beet using molecular markers. Paper presented at the Fourth International Plant Genome Conference, held in San Diego, California, January 14-18, 1996.

Virk, P.S., J. Zhu, H.J. Newbury, G.J. Bryan, M.T. Jackson & B.V. Ford-Lloyd, 2000. Effectiveness of different classes of molecular marker for classifying and revealing variation in rice (Oryza sativa) germplasm. Euphytica 112, 275-284. 

Zhu, J., M.D. Gale, S. Quarrie, M.T. Jackson & G.J. Bryan, 1998. AFLP markers for the study of rice biodiversity. Theoretical and Applied Genetics 96, 602-611. 

Zhu, J.H., P. Stephenson, D.A. Laurie, W. Li, D. Tang, M.T. Jackson & M.D. Gale, 1999. Towards rice genome scanning by map-based AFLP fingerprinting. Molecular and General Genetics 261, 184-295. 

 

 

Are you plant blind?

In our 1986 book Plant Genetic Resources: An Introduction to their Conservation and Use, my former colleague and friend of almost 50 years, Professor Brian Ford-Lloyd and I wrote (on page 1):

To most people the word ‘conservation’ conjures up visions of lovable cuddly animals like giant pandas on the verge of extinction. Or it refers to the prevention of the mass slaughter of endangered whale species, under threat because of human’s greed and short-sightedness. Comparatively few  however, are moved to action or financial contribution by the idea of economically important plant genes disappearing from the face of the earth. . . . But plant genetic resources make little impression on the heart even though their disappearance could herald famine on a greater scale than ever seen before, leading to ultimate world-wide disaster.

Hyperbole? Perhaps. Through our 1986 lens that did not seem far-fetched. And while it’s fair to say that the situation today is better in some respects than Brian and I predicted, there are new threats and challenges, such as global warming.

The world needs genetic diversity to breed varieties of crops that will keep agricultural systems sustainable, allow production of crops in drought-prone regions, where temperatures are increasing, and where new races of diseases threaten even the very existence of agriculture for some crops.

That genetic diversity comes from the hundreds of thousands of crop varieties that farmers have nurtured for generations since the birth of agriculture millennia ago, or in closely related wild species. After all, all crops were once wild species before domestication.

These are the genetic resources that must be safely guarded for future generations.

The work of the International Board for Plant Genetic Resources (IBPGR), then the International Plant Genetic Resources Institute (IPGRI), was pivotal in coordinating and supporting genetic resources programs worldwide, in the 1970s, 80s and 90s.

Then a new and very important player came along. Over the past decade and half the Crop Trust, has provided long-term support to some of the world’s most important genebanks.

International mechanisms have been put in place to support collection, conservation, study, and use of plant genetic resources. Yet, much remains to be done. And ‘Joe Public’ is probably still as unaware of the importance of the crop varieties and their wild relatives (and perhaps plants in general) as we feared more than three decades ago.


Wildlife programs on TV are mostly about animals, apart from the weekly gardening programs, and some such as David Attenborough’s The Private Life of Plants (broadcast in 1995). Animal programs attract attention for precisely the reasons that Brian and I highlighted in 1986. A couple of nights ago for instance I watched a fascinating, hour-long program on the BBC about hippos in the Okavango Delta of Botswana. Wonderful footage revealing never-before-seen hippo behaviour and ecology.

When it comes to genetic resources, animals don’t do so badly either, at least here in the UK. We get an almost weekly item about the importance of rare breeds of livestock and their imperiled status during the BBC’s flagship Countryfile program on Sunday evenings presented by farmer Adam Henson, whose father Joe helped set up the Rare Breeds Survival Trust (RBST) in 1973. The RBST has been pivotal in rescuing many breeds from the brink of extinction. Just last night (28 July) Adam proudly showed an Albion calf born the day before on his farm in the Cotswolds. The Albion breed is one of the rarest in the UK.

Photo credit: the RBST

But that says very little about all the endangered livestock breeds around the world that are fortunately the focus of the work of the International Livestock Research Institute (ILRI).

Ankole cattle from southwestern Uganda (photo credit: ILRI/Stevie Mann).

However . . .

When was the last time—if ever—you watched a TV documentary about the rare (so-called ‘heritage’) varieties of the food plants on which we depend, or their closest wild species relatives, such as the barleys of Ethiopia or the potatoes of the South American Andes, for instance. And would you really care if you hadn’t?

Are you even aware that the barleys that we use for brewing originally came from Ethiopia and the Middle East? Or that the Spanish brought the potato back to Europe in the 16th century from Peru? What about your daily cups of tea or coffee?

These are just some of the myriad of fascinating histories of our food crops. Today many of these staples are often more important in agriculture in parts of the world far distant from the regions where they originated and were first domesticated.

In the UK, enthusiasts will be aware of heritage vegetable varieties, and the many varieties of fruits like apples that have disappeared from commercial orchards, but are still grown at places like Berrington Hall in Herefordshire.

Take a look at this article by freelance communicator Jeremy Cherfas about the origins of the food we eat. Jeremy has written a lot about genetic resources (and many other aspects of sustainable agriculture). As he says, you may discover a few surprises.

In centers of domestication, the diversity of the crops grown by farmers is impressive indeed. It’s wonderful. It’s BEAUTIFUL! The domestication of crops and their use by farmers worldwide is the story of civilization.

Here are just a few examples from beans, maize, cocoa, cucurbits, wheat, and lentil.

And take a look at the video below.

Who could fail to be impressed by such a range of shapes and colors of these varieties? And these varieties (and wild species) contain all the genes we need to keep crops productive.

Plant genetic resources: food for the stomach, food for the soul.


My own work since 1971 concerned the conservation and use of potatoes and rice (and some legume species as side projects).

In Peru, I came to learn just how important potatoes are for communities that live at altitude in the Andes. Could the Inca empire have grown and dominated the region had there been no potatoes (and maize)?

Machu Picchu

And there are so many wild species of potatoes that can be found from the southern USA to the south of Chile and east into the plains of Brazil. The International Potato Center (CIP) in Lima (where I worked for over eight years) has the world’s largest genebank of potato varieties. Important wild species collections are maintained there, as well as in Scotland at the Commonwealth Potato Collection (maintained by the James Hutton Institute), and the USA, at the NRSP-6 Potato Genebank in Sturgeon Bay, WI.

Rice is the food of Asia. There are thousands upon thousands of varieties that grow in standing water, or on sloping uplands, or in areas that flood and so have evolved to elongate rapidly to keep pace with rising flood waters.

Here is a selection of images of rice diversity in Laos, one of the countries that we explored during the 1990s.

Would it have been possible to build the temple complex at Angkor Wat in Cambodia in the 12th century without rice? It has been estimated that upwards of one million workers were employed in its construction. That workforce needed a constant supply of staple rice, the only crop that could be grown productively in this monsoon environment.

These potato and rice examples are the tip of the genetic resources and civilization history iceberg. Think about the origins of agriculture in Turkey and the Mideast, 10,000 years ago. Remains of wheat, barley and pulses like lentil and chickpea have been found at the earliest cities in that region. And these histories are repeated all around the world.


In 1983 and 1984, BBC2 aired two series of a program called Geoffrey Smith’s World of Flowers, in which Smith (a professional gardener and broadcaster) waxed lyrical on the history of many of his favorite garden plants, and their development in cultivation: tulips from Turkey, dahlias from Mexico, lilies from North America, and many, many more.

In these programs, he talked about where and how the plants grow in the wild, when they had been collected, and by whom, and how through decades (centuries in some cases) of hybridization and selection, there are so many varieties in our gardens today. The programs attracted an audience of over 5 million apparently. And two books were also published.

I had an idea. If programs like these could be so popular, how about a series on the food plants that we eat, where they originated, how they were domesticated, and how modern varieties have been bred using these old varieties and wild species. I envisaged these programs encompassing archaeology and crop science, the rise of civilizations, completing the stories of why and which crops we depend on.

I wrote a synopsis for the programs and sent it to the producer at the BBC of the Geoffrey Smith programs, Brian Davies. I didn’t hear back for several weeks, but out of the blue, he wrote back and asking to come up to Birmingham for a further discussion. I pitched the idea to him. I had lots of photos of crop diversity and wild species, stories about the pioneers of plant genetic resources, like Vavilov, Jack Harlan, Erna Bennett, and Jack Hawkes, to name just a few. I explained how these plant stories were also stories about the development and growth of civilizations, and how this had depended on plant domestication. Stories could be told from some of the most important archaeological sites around the world.

Well, despite my enthusiasm, and the producer warming to the idea, he eventually wrote back that the BBC could not embark on such a series due to financial limitations. And that’s all I heard. Nevertheless, I still think that a series along these lines would make fascinating television. Now who would present the series (apart from myself, that is!)?

Maybe its time has come around again. From time-to-time, interesting stories appear in the media about crops and their origins, as this recent one about cocoa and vanilla in the Smithsonian Magazine illustrates.

But we need to do more to spread the plant genetic resources ‘gospel’. The stories are not only interesting, but essential for our agricultural survival.


 

Everyone’s a taxonomist

I’ve just discovered (via Twitter) that 19 March was Taxonomist Appreciation Day. This was, as far as I can make out, a celebration of the important—fundamental even—contribution that biologists known as taxonomists make to our understanding of the living world. Taxonomists bring order to the biodiversity that’s all around us. Indeed, without this order and understanding, it would be more difficult to know for example which plants and animals are endangered, and to prioritize what to conserve, and where.

The most celebrated taxonomist of all was surely the eighteenth century Swedish botanist Carl von Linné (whose Latinized name, Linnaeus, identifies him as the taxonomic authority, L., for many plants and animals).

So what do taxonomists do? One of their important roles is to describe and catalogue all plants and animals and, in the case of plants, publish this information in compendia known as Floras as an aid to identification, like those written about the plants of the British Isles and Europe that have been studied for hundreds of years.

Other Floras are still being written. Take the Flora Zambesiaca, for example, a project started in 1960 as the taxonomic study of native and naturalised plants of the Zambezi River basin, covering the territories of Botswana, Malawi, Mozambique, Zambia, Zimbabwe and the Caprivi Strip. This is a work in progress, and there are many other parts of the world where the diversity of plants is only now being discovered and documented, particularly in the Tropics.

But taxonomists also look at the variation within species, and assess the dynamics of species distribution and evolution.


Mr Les Watson

I had my first taste of taxonomy at the University of Southampton where, as first year students or freshmen in 1967/68, we studied the diversity of flowering plants under the tuition of taxonomist Les Watson. He and another colleague Alan Myers took us to the west coast of Ireland for a field course in July 1968 where we studied the vegetation of the Burren in Co Clare.

Professor Vernon Heywood

In my final or senior year in 1970, I sat in on a plant taxonomy course given by eminent taxonomist Professor Vernon Heywood from the University of Reading (Les Watson had moved to Australia in 1968/69, and had not been replaced in the Department of Botany). I met up with Professor Heywood in 1991 at a conference in Rome where we had an opportunity to reminisce about that course.

I never expected that, one day, I would engage in taxonomic research. However, I never participated in describing or naming plant species, nor undertaking the enormous task of contributing to Floras that is sometimes considered the be-all and end-all of taxonomists’ work. I take my hat off to those taxonomists who write Floras, often relying on dried herbarium specimens of plants collected in nature. Nevertheless, in my own work, I have used herbaria on occasion, and twice spent time looking at specimens of lentil (Lens culinaris Medik.) and grasspea (Lathyrus sativus L.) among the millions of herbarium sheets curated in the Herbarium at the Royal Botanic Gardens at Kew. My interest was in the relationships of these cultivated plants and their wild relatives.

Comparing notes in the field in the Andes of central Peru with potato taxonomist Professor Jack Hawkes (who supervised my PhD dissertation).

In 1973 I joined the International Potato Center in Peru as an Associate Taxonomist, studying the evolution of cultivated potatoes. Biosystematics, a sub-discipline of plant taxonomy, was my field, and I investigated species relationships through field experiments to understand patterns of morphological variation, through breeding experiments, and cytogenetic analysis of chromosome pairing in hybrids, among other several different approaches.

When I returned to Birmingham in 1981 as Lecturer in Plant Biology, I continued research on wild potatoes, and also several legume species. I also contributed about half the lectures to a second year module on flowering plant taxonomy.

On moving to the International Rice Research Institute (IRRI) in the Philippines in July 1991, my colleagues and I delved into the taxonomy and species relationships of the two cultivated species of rice, Oryza sativa L. and O. glaberrima Steud., and the 20 or so wild species in the genus Oryza. We published quite extensively, and you you can peruse a list of rice publications (many with PDF files) here.


Just last week I met up for lunch with six retired former colleagues from the School of Biological Sciences at the University of Birmingham: three plant scientists (including me), three geneticists, and a zoologist. Inevitably we began to discuss not only the administrative and organization changes that had occurred at the university (I taught there between 1981 and 1991), but how the teaching of biology had also changed, and the topics that now form a core biology curriculum.

Back in the day, whole organism biology still formed an important component of an undergraduate degree in biological sciences at Birmingham. Nowadays, and for obvious reasons, there’s much more focus on molecular biology, and recent hirings in what is now the School of Biosciences (Biological Sciences and Biochemistry merged some years back) reflect that change of emphasis.

Alas, it’s no longer possible to study at Birmingham for a biology degree with a plant sciences focus. But that’s not just a Birmingham issue; it’s nationwide. And taxonomy is perhaps the discipline that has suffered more than most. Taxonomists are just not coming through the system. Just at the time when one can argue there should be more demand for taxonomists than ever before, given the environmental changes that threaten the world’s vegetation. In some regions we may be losing species even before they have been identified. Harvard biologist EO Wilson wrote this in 2017: Our incomplete taxonomic knowledge impedes our attempts to protect biodiversity. A renaissance in the classification of species and their interactions is needed to guide conservation prioritization [1].


Now, I started this piece stating that everyone is a taxonomist. Is that a fair assumption?I think so.

Appa Rao collecting upland rice varieties from a farmer in the Lao PDR.

Taxonomy (and classification) is a fundamental human characteristic, something we do every day. We sort the complex world around us into meaningful categories, and we give them names. In many societies, farmers and their husbands use so-called ‘folk taxonomies’ to manage the various crops grown, and often the diversity of different varieties within a crop. I have myself talked to potato farmers in the Andes of southern Peru about their cultivation of different varieties, and why these are grown in different ways. In the Lao PDR, with my colleague Dr Appa Rao, we looked at how farmers name all their rice varieties.

Even before talking to my second year students about flowering plant taxonomy as such (and the different approaches used to study variation), I asked them to practice some simple taxonomies on themselves: males vs. females, blondes vs. brunettes, spectacle users vs. non-users, for example. These are discrete characteristics, binary, one or the other. Then we’d look at the complexity of coping with characters that vary quantitatively, such as height, length, etc.

Fortunately, there are many numerical techniques that allow us to cope with all sorts of measurements, and reduce complexity to a state that can be interpreted more easily.

The classification of different rice species based on the measurement and analysis of a range of morphological characters.

The use of different molecular markers now allows us to refine taxonomies built using morphological data. But, as I once read in a letter published in a scientific journal, a professor of taxonomy decried the lack of basic species knowledge among many students using molecular approaches. They could wax lyrical, he stated, about the value of different molecular techniques, but they had hardly looked at a living plant. That brings me back to my concern about the reduction in teaching whole organism biology.

As I say, we are all taxonomists, one way or another. Unfortunately I don’t see any scientific expansion (in the UK at least) in this particular discipline.

The situation may be different in North America. Plant sciences are still very strong in many US universities, and indeed there is a bill before Congress that promotes botanical research & sciences capacity, generates demand for native plant materials, & authorizes related federal activities.


[1] Wilson, EO (2017). Biodiversity research requires more boots on the ground. Nature Ecology & Evolution 1, 1590 –1591

Lentils (and Mrs. Vavilov) on my mind . . .

Nikolai Ivanovich Vavilov (1887-1943)—The Father of Plant Genetic Resources—is one of my scientific heroes. Yet I knew nothing about him until September 1970 when I began my graduate studies concerning the conservation and use of plant genetic resources at The University of Birmingham (in the Department of Botany as it was then).

Last Saturday, 26 January, was the 76th anniversary of Vavilov’s death in a Soviet prison.

Prison photos of Vavilov.

Vavilov’s grave in Saratov.

Botanist, science writer, and broadcaster James Wong (@Botanygeek) posted a short thread of tweets about Vavilov. So, I tweeted a reply to James about three scientists (two I worked with; the other I’d been introduced to) who met Vavilov in the 1930s.

I followed up with another  tweet.

Actually, Elena Barulina (1896-1957) was Vavilov’s second wife who passed away just two years after Vavilov had been ‘rehabilitated’ by the Soviet government, as she was working her way through his various publications.

Vavilov had first married Ekaterina Saharova in 1912, and they had one son, Oleg (born 1918).

Vavilov with his first wife Ekaterina, and son Oleg.

Vavilov divorced Ekaterina in 1926 and married Elena; they had one son, Yuri (born 1928). Both Oleg and Yuri became physicists, like their renowned uncle Sergey, Nikolai’s younger brother. Ekaterina died in 1963 never having remarried.

Elena Barulina and Nikolai Vavilov.


Elena (Helena) Barulina was an international lentil expert, publishing an important monograph in 1930. During the course of 1970-71, I got to know this publication in great detail.

So how did I get involved with lentils, and what was the outcome? As part of the MSc course requirements at Birmingham, each student had to present a short dissertation. I opted to carry out a study of crop variation, but first I had to choose the species for my study.

Trevor Williams

My dissertation supervisor was Dr J Trevor Williams (who went on to become the first Director General of the International Board for Plant Genetic Resources or IBPGR (that then became the International Plant Genetic Resources Institute or IPGRI, and is now Bioversity International) in Rome.

In November 1970, we scanned the pages of Flora Europaea, looking for potential targets among the various legume species. And there, under the cultivated lentil (Lens culinaris) was the important comment: Origin unknown. Now there was a challenge if ever we saw one!

Lentil is an ancient crop, associated with the earliest developments and spread of agriculture in the Near East and Mediterranean, and this is where the wild lentil species are also found. When I began my study, there were just five recognized lentil species (this was increased to seven in a 2015 paper):

  • Lens culinaris (the cultivated species)
  • L. orientalis
  • L. nigricans
  • L. ervoides
  • L. montbretii (now regarded as a species of Vicia)

I presented my dissertation, Studies in the genus Lens Miller with special reference to Lens culinaris Medik., in September 1971, having used Barulina’s monograph as my lentil ‘Bible’ throughout.

I grew a large field trial of lentil varieties and, from my analysis of the variation in morphological characters, some chromatographic analyses, and growth pattern relationships, concluded that the small- and large-seeded forms described by Barulina as subsp. microsperma and subsp. macrosperma were the extremes of a continuous variation pattern, and not correlated with geographical origin. Similar small- and large-seeded forms can also be seen in other legumes like faba bean and grasspea.

To analyze the relationships between the different lentil species, I spent several days working in the Herbarium at the Royal Botanic Gardens at Kew, measuring variation in many morphological characters on as many herbarium specimens of lentil species I could get my hands on. I also borrowed herbarium specimens from several other herbaria. In all I must have looked at least a couple of hundred herbarium sheets.

Hybrid indices for lentil species.

Species were compared by constructing hybrid indices (a numerical method developed and first described in 1949 by renowned American botanist, Edgar Anderson—another scientific hero of mine—in his seminal publication Introgressive Hybridization). This allowed me to determine to what extent variation patterns in lentil species overlapped, or were distinct. Click on the image to the right to see an enlarged version of the resulting hybrid indices.

While the variation patterns between some species were quite distinct, the continuity in variation between L. orientalis and L. culinaris led me to the conclusion that we might be describing a wild species progenitor-domesticate relationship. And, indeed, this is what I proposed in my dissertation.

A year later, the eminent Israeli botanist Daniel Zohary actually published a paper¹ in the scientific journal Economic Botany arriving at the same conclusion. The studies I commenced in 1970-71 were continued by Carmen Sánchez Kilner the following year, and in our 1974 paper we proposed that L. culinaris and L. orientalis were subspecies of the same species, L. culinaris. In 1979, another Israeli botanist, Gideon Ladizinsky, reached the same conclusion based on hybridization experiments and cytogenetic analysis, in a paper published in Euphytica.

Today, I’m sure students would dive straight into analyses of molecular markers to clarify the taxonomy and species relationships. Almost 50 years ago these techniques were not available, so we had to rely on a thorough analysis of species morphology, an approach that is often regarded today as ‘old hat’ but still remains the solid foundation of plant taxonomy. It was an approach that served us well, and our conclusions were corroborated by others later on.

I see my studies on lentils as an important link to Vavilov and his colleagues such as Elena Barulina. Also, in later research, I drew on Vavilov’s Law of Homologous Series and its relevance to potatoes, especially with regard to resistance to the cyst nematode (Globodera spp.).

It’s also interesting to note just how relevant the ‘Vavilov approach’ still is today (76 years after his death), guiding the exploration and use plant genetic resources to increase agricultural productivity, which was the focus of my career over 40 years.


¹ Zohary, D., 1972. The wild progenitor and the place of origin of the cultivated lentil, Lens culinaris. Econ. Bot. 26: 326–332.

A botanical field trip to the south of Peru . . . 45 years ago

In 1976, a paper appeared in the scientific journal Flora, authored by University of St Andrews botanist Peter Gibbs¹ (now retired), on the breeding system of a tuber crop, oca (Oxalis tuberosa), that is grown by farmers throughout the Andes of Peru and Bolivia.

Like a number of Oxalis species, oca has a particular floral morphology known as heterostyly that promotes outcrossing between different plants. In his 1877 The Different Forms of Flowers on Plants of the Same Species, Charles Darwin had illustrated (in Fig. 11) the particular situation of tristyly in ‘Oxalis speciosa‘, the same floral morphology that is found in oca. In this illustration taken from Darwin’s publication, the ‘legitimate’ pollinations are shown; stigmas can only receive pollen from stamens at the same level in another flower.

Anyway, to cut a long story short, Peter had visited Peru in early 1974 (hard to believe that it’s 45 years ago), made collections of oca from a number of localities, particularly one village, Cuyo Cuyo, in the Department of Puno in the south of Peru (just north of Lake Titicaca), and then studied the breeding system of the oca varieties that he’d collected. His 1976 paper in Flora emanated from that field trip.


But there’s more to that story (and publication) than meets the eye. It was also tied up with the research I was carrying out on potatoes in the Peruvian Andes at that time. Peter and I made that field trip together, spending at least three weeks on the road, before flying back to Lima from Cuzco.

I don’t recall precisely when I first met Peter. We were obviously in touch when planning the trip south, but I simply can’t remember whether, during 1973, Peter had passed through Lima where I was working at the International Potato Center (CIP) in La Molina since January that year, or he had contacted CIP’s Director General Richard Sawyer asking if the center could provide logistical support and the DG had passed that request on to me. Whatever the course of events, Peter and I came to an agreement to make a field trip together to the south of Peru.

This is the route of more than 2000 km that we took.

While working as an Associate Taxonomist at CIP I was also registered for a PhD in potato biosystematics (under potato expert Professor Jack Hawkes at The University of Birmingham) which I was expected to complete by 1975. My work, studying the breeding relationships of potato varieties with different chromosome numbers was similar, in some respects, to that Peter envisaged with oca.

I’d been looking for suitable field locations where it might be possible to study the dynamics of potato cultivation in an ‘unspoiled’ area where mostly traditional potato varieties were cultivated rather than varieties bred and released on the market in recent years. At the back end of 1973 I made a short visit to Puno on the shore of Lake Titicaca to explore several possible field sites. Then, Peter proposed we visit the remote village of Cuyo Cuyo, around 250 km north of Puno. He’d come across a paper (either one by AW Hill in 1939 or another by WH Hodge in 1951 – both are cited by Peter in his Flora paper) that described widespread oca cultivation at Cuyo Cuyo on a series of ancient terraces, but also of potato varieties. I wasn’t sure if this was the location I was looking for, but agreed that we could explore Cuyo Cuyo first before heading north towards Cuzco in search of other likely sites.


Our journey south to Puno took at least three days if memory serves me correctly. Our trusty chariot was a short wheelbase Land Rover, with a canvas hood.

Not the most secure vehicle if you have to park up overnight in an unprotected lot. Nor the most comfortable; very sturdy suspension. But an excellent vehicle otherwise for ‘driving’ out of tricky situations.

We headed south on the Panamericana Sur, stopping at Ica or Nazca on the first night south of Lima, then on the Arequipa on the second day.

The Panamericana hugs the coast through the southern desert, crossing river valleys that flow down from the Andes to meet the Pacific Ocean. Along these, and in the area of Camana (where the road heads inland to Arequipa) quite a lot of rice is grown.

From Arequipa it must have taken another day to travel to Puno across the altiplano.

We then had another night to recoup in Puno, enjoying a comfortable bed, some good food, and perhaps one too many algarrobina cocktails (made from pisco) that Peter had taken a shine to.

Along the shore of Lake Titicaca near Puno


It took a day to travel to Cuyo Cuyo, across the altiplano (>4000 masl), fording rivers, and then, as we approached the village from the south, dropping into a steep-sided valley, the Sandia Gorge.

We hit a cloud layer, obscuring views of the valley, but also coming across a landslide that had to be cleared before we could make progress.

Once past that barrier, the cloud cleared and we began to see something of the majesty of the Cuyo Cuyo valley, with the steep valley sides covered in ancient terraces that, as we discovered over the next few days, were still be farmed communally as they had been for generations apparently. On the descent into Cuyo Cuyo, the banks alongside the road were also covered in masses of a beautiful begonia (Begonia clarkei Hook.) with large white flowers about 3-4 inches in diameter.


Where to stay? There was no hotel or pensión in Cuyo Cuyo. We did however have some camping gear with us such as camp beds, sleeping bags and the like. Plus all our other equipment for collecting (and drying) herbarium samples, and flowers and flower buds for pollen and chromosome studies.

After some enquiries we met Sr Justo Salas Rubín (who was, if I remember correctly, the local postmaster – seen with Peter below) who gave us space in one of the rooms of his home (the ‘post office’?) to set up ‘camp’. We also soon became quite a curiosity for the local children (and some animal friends as well).

I was not disappointed that we chose Cuyo Cuyo first. It was an extraordinary location where we could interact with potato and oca farmers who grew a wide range of varieties, and who were open to collaborate with us. Since that visit in 1974 several other botanists (and anthropologists) have made field studies at Cuyo Cuyo on the agricultural terraces that I described here.

While Peter set about collecting samples in the many oca fields (mainly beside the river on the valley floor), I set off up the terraces to study a couple of fields for their varietal composition, the ploidy (or chromosome number) of these varieties, and the factors that led farmers to accept or reject varieties. I was interested to see how triploid varieties (sterile forms with 36 chromosomes that can only be formed following hybridization between varieties with 48 and 24 chromosomes) could enter farmer systems, and at what frequency.

I also looked at the methods used to cultivate potatoes, and the tools used.²

On the left is a foot plough, about 4 feet in length, known in Cuyo Cuyo as a ‘huire’ (most often ‘chaqui taccla’ in other parts of Peru). Its component parts are: A. ‘calzada’ that rests on the shoulder; B. ‘huiso’ or hand grip; C. ‘lazo’ or leather binding fastening the parts together; D. ‘taquillpo’ or foot rest; and E. the ‘reja’ or blade. On the right is a hand tool used for harvesting potatoes (and presumably oca as well) called the ‘lawccana’, as well as other cultivations during the growing season. Its component parts are: A. the ‘ccalo’ or handle; B. the ‘lazo’, a leather thong holding the blade C. or ‘chonta’ on to the handle.

My paper on potatoes at Cuyo Cuyo was finally published in 1980 in the journal Euphytica. And that’s a tale in itself.³

Peter was keen to make herbarium sheets of many of the varieties he’d collected. We set up a dryer in the house where we were staying. But there was a problem. Most of the samples were pretty wet to begin with, as we experienced intermittent rain during our stay in Cuyo Cuyo. Oca stems are very fleshy, and despite our best efforts, they just didn’t dry out. Even when we got them back to Lima, and Peter prepared them for shipping back to St Andrews, many of the samples were still showing signs of life.

Indeed, after he returned to Scotland, Peter was able to take cuttings from his herbarium samples and grow plants to maturity in the glasshouse, thus continuing his studies there.


After three or four days in Cuyo Cuyo, we retraced our steps to Puno, then headed north towards Cuzco and further study sites near Chinchero.

At these, I was particularly interested in taking flower bud samples from different potato fields. In the area we chose, farmers grew a combination of bred varieties for sale in the local markets of Cuzco and, around their homes, native varieties for home consumption. In this photo, large plantings of commercial varieties stretch into the distance. Around the homes in the foreground, in walled gardens, farmers grew their native varieties.

As I was busy looking at different varieties, these two women came by, and one sat down to breastfeed her baby. They are wearing the traditional dress of that region of Cuzco.

On another day we set out to study potato (and oca) fields a little more remote, so had to hire horses to reach our destination.

Field work complete, Peter and I spent a couple of days resting up in Cuzco before flying back to Lima. We left the Land Rover there for one of my colleagues Zósimo Huamán to pick up, as he planned to undertake some fieldwork as well before driving back to Lima.

During the couple of days in Cuzco we paid a call on Prof. César Vargas, a renowned Peruvian botanist (and close friend of my PhD supervisor Jack Hawkes), who I’d met once before in January 1973 not long after I arrived in Peru. Prof Vargas’s daughter Martha studied for her MSc degree in botany at the University of St Andrews.

L to R: my wife Steph, Peter, and Martha Vargas

All in all, we had a successful field trip to the south of Peru. It’s hard to believe it all took place 45 years ago next month. But it remains, in my mind’s eye, quite a significant trip from the years I spent in Peru.


¹ Peter graduated in botany from the University of Liverpool, and completed his PhD in 1964 there under the supervision of Professor Vernon Heywood, who moved to the University of Reading to become head of that university’s Department of Botany a couple of years later. Peter and I had a lot to talk about, because in 1969-70, when I was an undergraduate at the University of Southampton, Vernon Heywood gave a series of 20 lectures on flowering plant taxonomy over 10 weeks to Southampton botanists, because Leslie Watson, Southampton’s taxonomy lecturer had moved to Australia. Vernon and I renewed our acquaintance some years later, in 1991, when he and I attended a genetic resources meeting at the Food and Agriculture Organization of the United Nations (FAO) in Rome just before I moved to the Philippines to join the International Rice Research Institute (IRRI).

² One interesting piece of information that didn’t make it into my thesis but which I remember clearly was the incidence of geophagy among some residents of Cuyo Cuyo. I was taken to a location where farmers would excavate small quantities of a hard clay, that would be ground to a powder and mixed with water to form a slurry or soft paste. They would then dip recently harvested boiled potatoes in the clay as this, apparently, would decrease the slightly ‘spicy’ flavor of some of the varieties. I’m not sure how widespread this behavior was, but it’s something that has stuck in my mind all these years. I think I once had photos but they are long lost, more’s the pity.

³ I completed my PhD in December 1975, and shortly afterwards moved to Costa Rica to continue working for CIP, in potato breeding and agronomy. I started to prepare three manuscripts from my thesis for publication in Euphytica. The first, on varietal diversity, was submitted in February 1977, and published later the same year. The second, on breeding relationships, was published in 1978, having been submitted in July 1977. The third, on the ethnobotany of potato cultivation in Cuyo Cuyo finally appeared in print in 1980, having been submitted to Euphytica in February 1979.

But Euphytica had not been the first choice for this third paper. I actually produced a manuscript for the journal Economic Botany, and it included more details of the cropping systems and varietal choices made by farmers. My paper was received by the journal and acknowledged, but then I heard nothing more, for months and months. Eventually I wrote to the editor asking about the status of my manuscript. And I received a very strange reply.

It seemed that the editor-in-chief had retired, and his replacement had found, on file, manuscripts that had been submitted up to 20 years earlier, but had never been published! I was asked how I wanted to proceed with my manuscript as there was no guarantee it would appear in print any time soon. But about the same time, I received a nice letter from the then editor of Euphytica, Dr AC Zeven, complimenting me on my PhD thesis (which he had read in the library at Wageningen University in the Netherlands) and encouraging me to publish my work on the ethnobotany of potatoes – if I hadn’t already done so. I withdrew my manuscript from Economic Botany, and after some reformatting to fit the Euphytica style, sent it to Dr Zeven. He requested some deletions of the more descriptive sections on ethnobotany, and published my paper in 1980.


One last thing: I also remember was the novel that Peter was reading throughout the trip. Watership Down by Richard Adams, first published in 1972, that went on to become a literary sensation. I did read it myself at some point, but whether I borrowed Peter’s copy immediately after the trip, or some time later, I don’t recall. I know I didn’t think it would become the phenomenon that it did. What do I know?


 

Discovering Vavilov, and building a career in plant genetic resources: (2) Training the next generation of specialists in the 1980s

When, in the mid- to late-60s, Jack Hawkes was planning a one-year MSc course, Conservation and Utilization of Plant Genetic Resources (CUPGR), at the University of Birmingham (in the Department of Botany), Sir Otto Frankel (that doyen of the genetic resources movement) predicted that the course would probably have a lifetime of just 20 years, at most. By then, he assumed, all the persons who needed such training would have passed through the university’s doors. Job done! Well, it didn’t turn out quite that way.

The first cohort of four students graduated in September 1970, when I (and four others) arrived at the university to begin our careers in plant genetic resources. In 1989, the course celebrated its 20th anniversary. But there was still a demand, and Birmingham would continue to offer graduate training (and short course modules) in genetic resources for the next 15 or so years before dwindling applications and staff retirements made the course no longer viable.

Over its lifetime, I guess at least 500 MSc and Short Course students from more than 100 countries received their training in genetic conservation and use. So, for many years, the University of Birmingham lay at the heart of the growing genetic resources movement, and played a pivotal role in ensuring that national programs worldwide had the trained personnel to set up and sustain genetic conservation of local crops and wild species. Many Birmingham graduates went on to lead national genetic resources programs, as evidenced by the number who attended the 4th International Technical Conference on Plant Genetic Resources convened by FAO in Leipzig in June 1996.

Birmingham PGR students at the Leipzig conference in 1996. Trevor Sykes (class of 1969) is wearing the red tie, in the middle of the front row, standing next to Andrea Clausen (Argentina) on his left. Geoff Hawtin, then Director General of IPGRI is fourth from the right (On the back row), and Lyndsey Withers (who gave a course on in vitro conservation to Birmingham students) is second from the right on the front row (standing in between Liz Matos (from Angola) on her left, and the late Rosa Kambuou (Papua New Guinea).


In April 1981, I joined that training effort as a faculty member at the university. For the previous eight years, I had been working for the International Potato Center (CIP) in Peru and Costa Rica. Around September 1980 (a couple months before I left Costa Rica to return to Lima and my next assignment with CIP), I was made aware that a Lectureship had just been advertised in the Department of Plant Biology (as the Department of Botany had been renamed) to contribute to the MSc course curriculum.

Jack Hawkes was due to retire in September 1982 after he reached the mandatory retirement age (for full professors) of 67. He persuaded the university to create a lectureship in his department to cover some of the important topics that he would vacate, primarily in crop diversity and evolution.

After my arrival in Birmingham, I didn’t have any specifi